Projected effects of climate change on the distribution and abundance of breeding waterfowl in Eastern Canada

Abstract

As breeding areas are becoming warmer and wetter, climatic changes are likely to affect the distributions of millions of waterfowl in Eastern Canada. The objective of this study was to assess the potential effects of climate change on the breeding distribution and abundance of 12 common waterfowl species, by using a climate envelope modeling approach. Our response variables were species counts on 317 helicopter plots (25 km2) averaged over 22 years (1996–2017). We applied a covariate selection procedure to select the best subset of a panel of 170 climate covariates for each species, which we then used to fit quantile regression forest models. Climate change projections were applied to the waterfowl models to infer 2011–2100 abundances. From the projected abundances, we computed climate suitability indices that accounted for potential temporal mismatches between climate change and the biota, as well as the expected velocity of climate change. On average, with a maximum of 4 covariates per model, the variance explained was 41% for out-of-bag predictions. Overall, the magnitude of absolute projected changes peaked under the “high” greenhouse gas concentration trajectory (RCP8.5) and at the end of the century (2071–2100). Species-specific projections indicated that climate change would potentially increase the abundance and core distributions of 7/12 species, whereas 5/12 species would experience a decrease. In particular, large decreases were projected for Barrow’s goldeneye, an imperiled boreal cavity nester. Our spatially explicit indices of climate suitability deliver important information for targeting areas to preserve waterfowl, ecosystems, and the services they provide.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Allen MR., Dube OP, Solecki W et al (2018) Framing and context. In: Masson-Delmotte V, Zhai P, Pörtner HO et al (eds) Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, World Meteorological Organization, Geneva, pp 49–91

  2. Araújo MB, Pearson RG (2005) Equilibrium of species’ distributions with climate. Ecography 28:693–695. https://doi.org/10.1111/j.2005.0906-7590.04253.x

    Article  Google Scholar 

  3. Araújo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modeling. Ecology 93:1527–1539. https://doi.org/10.1890/11-1930.1

    Article  Google Scholar 

  4. Araújo MB, Anderson RP, Barbosa AM et al (2019) Standards for distribution models in biodiversity assessments. Sci Adv 5:eaat4858. https://doi.org/10.1126/sciadv.aat4858

    Article  Google Scholar 

  5. Aubin I, Munson AD, Cardou F et al (2016) Traits to stay, traits to move: a review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to climate change. Environ Rev 24:164–186. https://doi.org/10.1139/er-2015-0072

    Article  Google Scholar 

  6. Barker NKS, Cumming SG, Darveau M (2014) Models to predict the distribution and abundance of breeding ducks in Canada. Avian Conserv Ecol 9:7 https://doi.org/10.5751/ACE-00699-090207

    Article  Google Scholar 

  7. Bateman BL, Wilsey C, Taylor L et al (2019) North American birds require mitigation and adaptation to reduce vulnerability to climate change. Conserv Sci Pract 2:242. https://doi.org/10.1111/csp2.242

    Article  Google Scholar 

  8. Beaudoin A, Bernier PY, Villemaire P et al (2017) Tracking forest attributes across Canada between 2001 and 2011 using a k nearest neighbors mapping approach applied to MODIS imagery. Can J For Res 48:85–93. https://doi.org/10.1139/cjfr-2017-0184

    Article  Google Scholar 

  9. Berteaux D, de Blois S, Angers JF et al (2010) The CC-Bio Project: studying the effects of climate change on Quebec biodiversity. Diversity 2:1181–1204. https://doi.org/10.3390/d2111181

    Article  Google Scholar 

  10. Berteaux D, Casajus N, de Blois S (2014) Changements climatiques et biodiversité du Québec: vers un nouveau patrimoine naturel. Presses de l'Université du Québec, Québec

    Google Scholar 

  11. Berteaux D, Ricard M, St-Laurent MH et al (2018) Northern protected areas will become important refuges for biodiversity tracking suitable climates. Sci Rep 8:4623. https://doi.org/10.1038/s41598-018-23050-w

    Article  Google Scholar 

  12. Boisvert-Marsh L, Périé C, de Blois S (2014) Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere 5:1–33. https://doi.org/10.1890/ES14-00111.1

    Article  Google Scholar 

  13. Bordage D, Bateman MC, Ross RK, Lepage C (2017a) Helicopter-based waterfowl breeding pair survey in eastern Canada and related studies. Black Duck Joint Venture Special Publication

  14. Bordage D, Ross RK, Bateman MC, Cotter R (2017b) Indicated breeding pair criteria for the helicopter-based waterfowl survey in eastern Canada. In: Bordage D, Bateman MC, Ross RK, Lepage C (eds) Helicopter-based waterfowl breeding pair survey in eastern Canada and related studies. Black Duck Joint Venture Special Publication, pp. 53–62

  15. Brassard BW, Chen HY (2006) Stand structural dynamics of North American boreal forests. Crit Rev Plant Sci 25:115–137. https://doi.org/10.1080/07352680500348857

    Article  Google Scholar 

  16. Bucklin DN, Basille M, Benscoter AM et al (2015) Comparing species distribution models constructed with different subsets of environmental predictors. Divers Distrib 21:23–35. https://doi.org/10.1111/ddi.12247

  17. Carroll C, Lawler JJ, Roberts DR et al (2015) Biotic and climatic velocity identify contrasting areas of vulnerability to climate change. PLoS One 10:e0140486. https://doi.org/10.1371/journal.pone.0142024

    Article  Google Scholar 

  18. Crick HQ (2004) The impact of climate change on birds. Ibis 146:48–56. https://doi.org/10.1111/j.1474-919X.2004.00327.x

    Article  Google Scholar 

  19. Drever MC, Clark RG, Derksen C et al (2012) Population vulnerability to climate change linked to timing of breeding in boreal ducks. Glob Change Biol 18:480–492. https://doi.org/10.1111/j.1365-2486.2011.02541.x

    Article  Google Scholar 

  20. Dzubin A (1969) Assessing breeding populations of ducks by ground counts. Northern Prairie Wildlife Research Center, Jamestown

    Google Scholar 

  21. Environment Canada (2013) Management plan for the Barrow’s goldeneye (Bucephala islandica), eastern population, in Canada. Species at Risk Act Management Plan Series. Environment Canada, Ottawa

    Google Scholar 

  22. Fei S, Desprez JM, Potter KM et al (2017) Divergence of species responses to climate change. Sci Adv 3:e1603055. https://doi.org/10.1126/sciadv.1603055

    Article  Google Scholar 

  23. Fossey M, Rousseau AN (2016) Assessing the long-term hydrological services provided by wetlands under changing climate conditions: a case study approach of a Canadian watershed. J Hydrol 541:1287–1302. https://doi.org/10.1016/j.jhydrol.2016.08.032

    Article  Google Scholar 

  24. Girardin MP, Terrier A (2015) Mitigating risks of future wildfires by management of the forest composition: an analysis of the offsetting potential through boreal Canada. Clim Chang 130:587–601. https://doi.org/10.1007/s10584-015-1373-7

    Article  Google Scholar 

  25. Gordo O (2007) Why are bird migration dates shifting? A review of weather and climate effects on avian migratory phenology. Clim Res 35:37–58. https://doi.org/10.3354/cr00713

    Article  Google Scholar 

  26. Guillemain M, Pöysä H, Fox AD et al (2013) Effects of climate change on European ducks: what do we know and what do we need to know? Wildlife Biol 19:404–419. https://doi.org/10.2981/12-118

    Article  Google Scholar 

  27. Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Chang Biol 12:2272–2281. https://doi.org/10.1111/j.1365-2486.2006.01256.x

    Article  Google Scholar 

  28. Hitch AT, Leberg L (2007) Breeding distributions of North American bird species moving north as a result of climate change. Conserv Biol 21:534–539. https://doi.org/10.1111/j.1523-1739.2006.00609.x

    Article  Google Scholar 

  29. Howard C, Stephens PA, Pearce-Higgins JW et al (2014) Improving species distribution models: the value of data on abundance. Methods Ecol Evol 5:506–513. https://doi.org/10.1111/2041-210X.12184

    Article  Google Scholar 

  30. Johnsgard PA (2010) Waterfowl of North America. University of Nebraska Press, Lincoln

    Google Scholar 

  31. Johnson WC, Millett BV, Gilmanov T et al (2005) Vulnerability of northern prairie wetlands to climate change. Bioscience 55:863–872. https://doi.org/10.1641/0006-3568(2005)055[0863:VONPWT]2.0.CO;2

    Article  Google Scholar 

  32. Johnston A, Fink D, Reynolds MD et al (2015) Abundance models improve spatial and temporal prioritization of conservation resources. Ecol Appl 25:1749–1756. https://doi.org/10.1890/14-1826.1

    Article  Google Scholar 

  33. Keppel G, Mokany K, Wardell-Johnson GW et al (2015) The capacity of refugia for conservation planning under climate change. Front Ecol Environ 13:106–112. https://doi.org/10.1890/140055

    Article  Google Scholar 

  34. King M, Altdorff D, Li P et al (2018) Northward shift of the agricultural climate zone under 21st-century global climate change. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-26321-8

    Article  Google Scholar 

  35. La Sorte FA, Jetz W (2012) Tracking of climatic niche boundaries under recent climate change. J Anim Ecol 81:914–925. https://doi.org/10.1111/j.1365-2656.2012.01958.x

    Article  Google Scholar 

  36. La Sorte FA, Thompson FR III (2007) Poleward shifts in winter ranges of North American birds. Ecology 88:1803–1812. https://doi.org/10.1890/06-1072.1

    Article  Google Scholar 

  37. Lepage C, Bordage D (2013) Status of Quebec waterfowl populations, 2009. Canadian Wildlife Service, Environment Canada, Québec

    Google Scholar 

  38. Loarie SR, Duffy PB, Hamilton H et al (2009) The velocity of climate change. Nature 462:1052–1055. https://doi.org/10.1038/nature08649

    Article  Google Scholar 

  39. Martin K, Aitken KEH, Wiebe KL (2004) Nest sites and nest webs for cavity-nesting communities in interior British Columbia, Canada: nest characteristics and niche partitioning. Condor 106:5–19. https://doi.org/10.1093/condor/106.1.5

    Article  Google Scholar 

  40. McCarty JP (2001) Ecological consequences of recent climate change. Conserv Biol 15:320–331

    Article  Google Scholar 

  41. McKenney DW, Pedlar JH, Rood RB et al (2011a) Revisiting projected shifts in the climate envelopes of North American trees using updated general circulation models. Glob Chang Biol 17:2720–2730. https://doi.org/10.1111/j.1365-2486.2011.02413.x

    Article  Google Scholar 

  42. McKenney DW, Hutchinson MF, Papadopol P et al (2011b) Customized spatial climate models for North America. B Am Meteorol Soc 92:1611–1622. https://doi.org/10.1175/2011BAMS3132.1

    Article  Google Scholar 

  43. Meinshausen N (2006) Quantile regression forests. J Mach Learn Res 7:983–999

    Google Scholar 

  44. Mitsch WJ, Hernandez ME (2013) Landscape and climate change threats to wetlands of North and Central America. Aquat Sci 75:133–149. https://doi.org/10.1007/s00027-012-0262-7

    Article  Google Scholar 

  45. Ouranos (2015) Summary of the synthesis on climate change knowledge in Quebec, 2015th edn. Ouranos Consortium, Montréal

  46. Pacifici M, Foden WB, Visconti P et al (2015) Assessing species vulnerability to climate change. Nat Clim Chang 5:215–224. https://doi.org/10.1038/nclimate2448

    Article  Google Scholar 

  47. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  48. PCIC (2019) Statistically downscaled climate scenarios. https://www.pacificclimate.org/data/statistically-downscaled-climate-scenarios.

  49. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371. https://doi.org/10.1046/j.1466-822X.2003.00042.x

    Article  Google Scholar 

  50. Pearson RG, Thuiller W, Araújo MB et al (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711. https://doi.org/10.1111/j.1365-2699.2006.01460.x

    Article  Google Scholar 

  51. Poole A (2005) The birds of North America online. Cornell Laboratory of Ornithology, Ithaca

    Google Scholar 

  52. Pothier D, Raulier F, Riopel M (2004) Ageing and decline of trembling aspen stands in Quebec. Can J For Res 34:1251–1258. https://doi.org/10.1139/x04-017

    Article  Google Scholar 

  53. Prairie Habitat Joint Venture (2014) Prairie Habitat Joint Venture Implementation Plan 2013–2020: the Western Boreal Forest. Environment Canada, Edmonton

    Google Scholar 

  54. Price DT, Alfaro RI, Brown KJ et al (2013) Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ Rev 21:322–365. https://doi.org/10.1139/er-2013-0042

    Article  Google Scholar 

  55. Robert M, Bordage D, Savard JPL et al (2000) The breeding range of the Barrow’s Goldeneye in eastern North America. Wilson Bull 112:1–7

    Article  Google Scholar 

  56. Roberts BE, Harris WE, Hilton GM, Marsden SJ (2016) Taxonomic and geographic bias in conservation biology research: a systematic review of wildfowl demography studies. PLoS One 11:e0153908. https://doi.org/10.1371/journal.pone.0153908

    Article  Google Scholar 

  57. Santos MJ, Smith AB, Thorne JH et al (2017) The relative influence of change in habitat and climate on elevation range limits in small mammals in Yosemite National Park, California, USA. Clim Change Resp 4:1–7. https://doi.org/10.1186/s40665-017-0035-6

  58. Sauer JR, Hines JE, Fallon JE et al (2012) The North American breeding bird survey, results and analysis 1966–2011. US Geological Survey, Patuxent Wildlife Research Center, Laurel

    Google Scholar 

  59. Sorenson LG, Goldberg R, Root TL, Anderson MG (1998) Potential effects of global warming on waterfowl populations breeding in the northern Great Plains. Clim Chang 40:343–369. https://doi.org/10.1023/A:1005441608819

    Article  Google Scholar 

  60. Steen VA, Skagen SK, Noon BR (2014) Vulnerability of breeding waterbirds to climate change in the Prairie Pothole Region, USA. PLoS One 9:e96747. https://doi.org/10.1371/journal.pone.0096747

    Article  Google Scholar 

  61. Stralberg D, Bayne EM, Cumming SG et al (2015a) Conservation of future boreal forest bird communities considering lags in vegetation response to climate change: a modified refugia approach. Divers Distrib 21:1112–1128. https://doi.org/10.1111/ddi.12356

    Article  Google Scholar 

  62. Stralberg D, Matusoka SM, Hamann A et al (2015b) Projecting boreal bird responses to climate change: the signal exceeds the noise. Ecol Appl 25:52–69. https://doi.org/10.1890/13-2289.1

    Article  Google Scholar 

  63. Stralberg D, Carroll C, Pedlar JH et al (2018) Macrorefugia for North American trees and songbirds: climatic limiting factors and multi-scale topographic influences. Glob Ecol Biogeogr 27:690–703. https://doi.org/10.1111/geb.12731

    Article  Google Scholar 

  64. Svenning JC, Sandel B (2013) Disequilibrium vegetation dynamics under future climate change. Am J Bot 100:1266–1286. https://doi.org/10.3732/ajb.1200469

    Article  Google Scholar 

  65. Tayleur C, Caplat P, Massimino D et al (2015) Swedish birds are tracking temperature but not rainfall: evidence from a decade of abundance changes. Glob Ecol Biogeogr 24:859–872. https://doi.org/10.1111/geb.12308

    Article  Google Scholar 

  66. Thomas CD, Lennon JJ (1999) Birds extend their ranges northwards. Nature 399:213. https://doi.org/10.1038/20335

    Article  Google Scholar 

  67. Tingley MW, Monahan WB, Beissinger SR et al (2009) Birds track their Grinnellian niche through a century of climate change. Proc Natl Acad Sci U S A 106:19637–19643. https://doi.org/10.1073/pnas.0901562106

    Article  Google Scholar 

  68. Trautmann S (2018) Climate change impacts on bird species. In: Tietze DT (ed) Bird species: how they arise, modify and vanish. Springer International Publishing, Cham, pp 217–234

    Google Scholar 

  69. Urban MC, Bocedi G, Hendry AP et al (2016) Improving the forecast for biodiversity under climate change. Science 353:aad8466. https://doi.org/10.1126/science.aad8466

    Article  Google Scholar 

  70. Vaillancourt MA, Drapeau P, Robert M, Gauthier S (2009) Origin and availability of large cavities for Barrow’s goldeneye (Bucephala islandica), a species at risk inhabiting the eastern Canadian boreal forest. Avian Conserv Ecol 4:6. https://doi.org/10.5751/ace-00295-040106

    Article  Google Scholar 

  71. van Vuuren DP, Edmonds J, Kainuma M et al (2011) The representative concentration pathways: an overview. Clim Chang 109:5. https://doi.org/10.1007/s10584-011-0148-z

    Article  Google Scholar 

  72. Werner AT, Cannon AJ (2016) Hydrologic extremes - an intercomparison of multiple gridded statistical downscaling methods. Hydrol Earth Syst Sci 20:1483–1508. https://doi.org/10.5194/hess-20-1483-2016

    Article  Google Scholar 

  73. Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431

    Article  Google Scholar 

  74. Wiens JA, Stralberg D, Jongsomjit D et al (2009) Niches, models, and climate change: assessing the assumptions and uncertainties. Proc Natl Acad Sci U S A 106(Suppl 2):19729–19736. https://doi.org/10.1073/pnas.0901639106

    Article  Google Scholar 

  75. Withey P, van Kooten GC (2011) The effect of climate change on optimal wetlands and waterfowl management in Western Canada. Ecol Econ 70:798–805. https://doi.org/10.1016/j.ecolecon.2010.11.019

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the valuable insights provided by the members of the Ouranos-MITACS scientific monitoring board (François Bolduc, Jérôme Dupras, Dominique Gravel, Nathalie Martel, Robert Siron, and Benoit Vanier) and the steering committee (Louis Imbeau and Marc Mazerolle) of A. Adde PhD. This research was enabled in part by support provided by Calcul Québec (www.calculquebec.ca) and Compute Canada (www.computecanada.ca).

Funding

Funding was provided by an Ouranos-MITACS (IT12104) internship. A. Adde benefited from additional scholarships from the Institut Hydro-Québec en environnement, développement et société, Université Laval and the Centre d’étude de la forêt.

Author information

Affiliations

Authors

Contributions

SC, MD, and AA conceived the study. AA planned and conducted the analyses. AA wrote the original manuscript. All authors made substantial contributions to the interpretation of results and the editing of the manuscript.

Corresponding author

Correspondence to Antoine Adde.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

The ZIP file containing the maps and spatial data objects can be downloaded from: https://figshare.com/s/da193f7507245b6e74e0

ESM 1

(DOCX 19.1 kb)

ESM 2

(DOCX 24.3 kb)

ESM 3

(XLSX 128 kb)

ESM 4

(DOCX 439 kb)

ESM 5

(DOCX 13.8 kb)

ESM 6

(DOCX 14 kb)

ESM 7

(DOCX 14.1 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adde, A., Stralberg, D., Logan, T. et al. Projected effects of climate change on the distribution and abundance of breeding waterfowl in Eastern Canada. Climatic Change 162, 2339–2358 (2020). https://doi.org/10.1007/s10584-020-02829-9

Download citation

Keywords

  • Breeding waterfowl
  • Climate change
  • Climate suitability
  • Climate envelope modeling
  • Eastern Canada
  • Conservation