Twenty-first century-end climate scenario of Jammu and Kashmir Himalaya, India, using ensemble climate models

Abstract

The study investigates the future climate change in the Jammu and Kashmir (J&K) Himalaya, India, by the end of the twenty-first century under 3 emission scenarios and highlights the changes in the distribution of the prevalent climate zones in the region. The multi-model climate high-resolution projections for the baseline period (1961–1990) are validated against the observed climate variables from 8 meteorological stations in the region. The temperature projections from the GFDL CM2.1 model are found in good agreement with the observations; however, no single model investigated in the present study reasonably simulates precipitation and therefore multi-model ensemble is used for precipitation projections. The average annual temperature is projected to increase by 4.5 °C, 3.98 °C, and 6.93 °C by the end of the twenty-first century under A1B, RCP4.5, and RCP8.5 scenarios, respectively. In contrast, an insignificant variation in precipitation projection is observed under all the 3 scenarios. The analysis indicates that, unlike the 13 climate zones under the updated Köppen-Geiger climate classification scheme, the J&K Himalaya broadly falls into 10 main climate zones only namely, “3 subtropical (~ 11%), 4 temperate (~ 19%), and 3 cold desert (~ 70%) zones”. The projected climate change under the 3 emission scenarios indicates significant changes in the distribution of prevalent climate zones. The cold desert climate zone in the Ladakh region would shrink by ~ 22% and correspondingly the subtropical and temperate zones would expand due to the projected climate change. This information is vital for framing robust policies for adaptation and mitigation of the climate change impacts on various socio-economic and ecological sectors in the region.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

We gratefully acknowledge the World Climate Research Programme’s Working Group on Coupled Modeling and the climate modeling groups and the University of Wisconsin (listed in the Online Resource 2 of this paper) for making the climate data publicly available for this study.

References

  1. Achberger C, Linderson ML, Chen D (2003) Performance of the Rossby Centre regional atmospheric model in southern Sweden: comparison of simulated and observed precipitation. Theor Appl Climatol 76(3–4):219–234. https://doi.org/10.1007/s00704-003-0015-6

    Article  Google Scholar 

  2. Akhtar M, Ahmad N, Booij MJ (2008) The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya region under different glacier coverage scenarios. J Hydrol 355(1–4):148–163. https://doi.org/10.1016/j.jhydrol.2008.03.015

    Article  Google Scholar 

  3. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419(6903):24

    Google Scholar 

  4. Bagnolus F, Meher-Homji VM (1959) Bio-climatic types of Southeast Asia. Institute Francais de Pondichery

  5. Bailey RG (2009) Ecosystem geography: from ecoregions to sites. Springer Science & Business Media

  6. Bajracharya SR, Mool PK, Shrestha BR (2007). Impact of climate change on Himalayan glaciers and glacial lakes: case studies on GLOF and associated hazards in Nepal and Bhutan. International Centre for Integrated Mountain Development (ICIMOD)

  7. Baker B, Diaz H, Hargrove W, Hoffman F (2010) Use of the Köppen–Trewartha climate classification to evaluate climatic refugia in statistically derived ecoregions for the People’s republic of China. Clim Chang 98(1–2):113. https://doi.org/10.1007/s10584-009-9622-2

    Article  Google Scholar 

  8. Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438(7066):303. https://doi.org/10.1038/nature04141

    Article  Google Scholar 

  9. Beck HE, Zimmermann NE, Mcvicar TR et al (2018) Data descriptor: present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5:1–12. https://doi.org/10.1038/sdata.2018.214

    Article  Google Scholar 

  10. Belda M, Holtanová E, Halenka T, Kalvová J (2014) Climate classification revisited: from Köppen to Trewartha. Clim Res 59(1):1–13. https://doi.org/10.3354/cr01204

    Article  Google Scholar 

  11. Bhutiyani MR, Kale VS, Pawar NJ (2007) Long-term trends in maximum, minimum and mean annual air temperatures across the north western Himalaya during the 20th century. Clim Chang 85:159–177. https://doi.org/10.1007/s10584-006-9196-1

    Article  Google Scholar 

  12. Bhutiyani MR, Kale VS, Pawar NJ (2010) Climate change and the precipitation variations in the north western Himalaya: 1866–2006. Int J Climatol 30:535–548. https://doi.org/10.1002/joc.1920

    Article  Google Scholar 

  13. Bolch T, Kulkarni A, Kääb A et al (2012) The state and fate of Himalayan glaciers. Science 336(6079):310–314. https://doi.org/10.1126/science.1215828

    Article  Google Scholar 

  14. Bolch T, Shea JM, Liu S et al (2019) Status and change of the cryosphere in the extended Hindu Kush Himalaya region. The Hindu Kush Himalaya Assessment Springer, Cham, In, pp 209–255. https://doi.org/10.1007/978-3-319-92288-1_7

    Book  Google Scholar 

  15. Brown JE (2006) An analysis of the performance of hybrid infrared and microwave satellite precipitation algorithms over India and adjacent regions. Remote Sens Environ 101(1):63–81. https://doi.org/10.1016/j.rse.2005.12.005

    Article  Google Scholar 

  16. Champion SH, Seth SK (1968) A revised survey of the forest types of India. A revised survey of the forest types of India. Natraj Publishers, Dehradun

    Google Scholar 

  17. Chaturvedi RK, Joshi J, Jayaraman M et al (2012) Multi-model climate change projections for India under representative concentration pathways. Curr Sci 103(7):91–802

    Google Scholar 

  18. Chen D, Chen HW (2013) Using the Köppen classification to quantify climate variation and change: an example for 1901–2010. Environ Dev 6:69–79. https://doi.org/10.1016/j.envdev.2013.03.007

    Article  Google Scholar 

  19. Chevuturi A, Dimri AP, Thayyen RJ (2018) Climate change over Leh (Ladakh), India. Theor Appl Climatol 131(1–2):531–545. https://doi.org/10.1007/s00704­016­1989­1

  20. Dar RA, Rashid I, Romshoo SA et al (2014) Sustainability of winter tourism in a changing climate over Kashmir Himalaya. Environ Monit Assess 186(4):2549–2562. https://doi.org/10.1007/s10661-013-3559-7

    Article  Google Scholar 

  21. Deser C, Phillips A, Bourdette V et al (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38(3–4):527–546. https://doi.org/10.1007/s00382-010-0977-x

    Article  Google Scholar 

  22. Dimri AP, Niyogi D (2013) Regional climate model application at subgrid scale on Indian winter monsoon over the western Himalayas. Int J Climatol 33(9):2185–2205. https://doi.org/10.1002/joc.3584

    Article  Google Scholar 

  23. Dinku T, Ceccato P, Grover-Kopec E et al (2007) Validation of satellite rainfall products over East Africa's complex topography. Int J Remote Sens 28(7):1503–1526. https://doi.org/10.1080/01431160600954688

    Article  Google Scholar 

  24. Forsythe N, Blenkinsop S, Fowler HJ (2015) Exploring objective climate classification for the Himalayan arc and adjacent regions using gridded data sources. Earth Syst Dyn 6:311–326. https://doi.org/10.5194/esd-6-311-2015

    Article  Google Scholar 

  25. Gaire NP, Koirala M, Bhuju DR et al (2013) Treeline dynamics with climate change at Central Nepal Himalaya. Clim Past Discuss 9(5). https://doi.org/10.5194/cpd-9-5941-2013

  26. Gao Y, Xu J, Chen D (2015) Evaluation of WRF mesoscale climate simulations over the Tibetan plateau during 1979–2011. J Clim 28(7):2823–2841. https://doi.org/10.1175/JCLI-D-14-00300.1

    Article  Google Scholar 

  27. Goswami BN, Venugopal V, Sengupta D et al (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314(5804):1442–1445. https://doi.org/10.1126/science.1132027

    Article  Google Scholar 

  28. Gumindoga W, Rientjes THM, Haile AT et al (2016) Bias correction schemes for CMORPH satellite rainfall estimates in the Zambezi River basin. Hydrol Earth Syst Sci. https://doi.org/10.5194/hess-2016-33

  29. Hasan B (1999) Rainfall climatology of Jammu and Kashmir state, India. Drought Network News (1994–2001):44

  30. Immerzeel WW, Van Beek LP, Bierkens MF (2010) Climate change will affect the Asian water towers. Science 328(5984):1382–1385. https://doi.org/10.1126/science.1183188

    Article  Google Scholar 

  31. Immerzeel WW, Van Beek LPH, Konz M et al (2012) Hydrological response to climate change in a glacierized catchment in the Himalayas. Clim Chang 110(3–4):721–736. https://doi.org/10.1007/s10584-011-0143-4

    Article  Google Scholar 

  32. IPCC (2007) Climate change 2007-impacts, adaptation and vulnerability: working group II contribution to the fourth assessment report of the intergovernmental panel on climate change (IPCC) (Vol. 4). Cambridge University Press

  33. IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press

  34. Jenkins G, Lowe J (2003) Handling uncertainties in the UKCIP02 scenarios of climate change. Hadley Centre, technical note 44, Exeter, UK

  35. Jiang SH, Ren LL, Yong B et al (2010) Evaluation of high-resolution satellite precipitation products with surface rain gauge observations from Laohahe Basin in northern China. Water Sci Engg 3(4):405–417. https://doi.org/10.3882/j.issn.16742370.2010.04.004

    Article  Google Scholar 

  36. Jo S, Ahn J, Cha D, Min S et al (2019) The Köppen-Trewartha climate-type changes over the CORDEX-East Asia Phase 2 Domain under 2 and 3 °C global warming. Geophys Res Lett 46(23):14030–14041. https://doi.org/10.1029/2019GL085452

    Article  Google Scholar 

  37. Karki R, Talchabhadel R, Aalto J, Baidya SK (2016) New climatic classification of Nepal. Theor Appl Climatol 125:799–809. https://doi.org/10.1007/s00704-015-1549-0

    Article  Google Scholar 

  38. Khadka D, Babel MS, Shrestha S et al (2014) Climate change impact on glacier and snow melt and runoff in Tamakoshi basin in the Hindu Kush Himalayan (HKH) region. J Hydrol 511:49–60. https://doi.org/10.1016/j.jhydrol.2014.01.005

    Article  Google Scholar 

  39. Knutti R, Masson D, Gettelman A (2013) Climate model genealogy: generation CMIP5 and how we got there. Geophys Res Lett 40(6):1194–1199. https://doi.org/10.1002/grl.50256

    Article  Google Scholar 

  40. Köppen W (1900) Versuch einer Klassif kation der Klimate, vorzugsweise nach ihren Beziehungen zur Pf anzenwelt. Geogr Z 6(593–611):657–679

    Google Scholar 

  41. Köppen W (1936) Das geographische system der climate. Handbuch der klimatologie, Gebr, Borntraeger, Berlin

    Google Scholar 

  42. Köppen W, Geiger R (1930) Handbuch der klimatologie. GebrüderBorntraeger, Berlin

    Google Scholar 

  43. Kottek M, Grieser J, Beck C et al (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15(3):259–263. https://doi.org/10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  44. Kriticos DJ, Webber BL, Leriche A et al (2012) CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol Evol 3:53–64. https://doi.org/10.1111/j.2041-210X.2011.00134.x

    Article  Google Scholar 

  45. Lutz AF, ter Maat HW, Biemans H, Shrestha et al (2016) Selecting representative climate models for climate change impact studies: an advanced envelope based selection approach. Int J Climatol 36(12):3988–4005. https://doi.org/10.1002/joc.4608

    Article  Google Scholar 

  46. Maharana AK, Ray P (2014) Low temperature degradation of various substrates by psychrotolerant Fusarium spp. isolated from soil of Jammu city. J Adv Microbiol 1:52–56

    Google Scholar 

  47. Mahlstein I, Daniel JS, Solomon S (2013) Pace of shifts in climate regions increases with global temperature. Nature Clim Chang 3(8):739. https://doi.org/10.1038/nclimate1876

    Article  Google Scholar 

  48. Marazi A, Romshoo SA (2018) Streamflow response to shrinking glaciers under changing climate in the Lidder Valley, Kashmir Himalayas. J Mt Sci 15(6):1241–1253. https://doi.org/10.1007/s11629-017-4474-0

    Article  Google Scholar 

  49. Miller JD, Immerzeel WW, Rees G (2012) Climate change impacts on glacier hydrology and river discharge in the Hindu Kush–Himalayas: a synthesis of the scientific basis. Mt Res Dev 32(4):461–467. https://doi.org/10.1659/MRD-JOURNAL-D-12-00027.1

    Article  Google Scholar 

  50. Murtaza KO, Romshoo SA (2017) Recent glacier changes in the Kashmir Alpine Himalayas India. Geocarto Intl 32(2):188–120. https://doi.org/10.1080/10106049.2015.1132482

    Article  Google Scholar 

  51. Mushtaq F, Pandey AC (2014) Assessment of land use/land cover dynamics vis-à-vis hydrometeorological variability in Wular Lake environs Kashmir Valley, India using multitemporal satellite data. Arab J Geosci 7(11):4707–4715. https://doi.org/10.1007/s12517-013-1092-1

    Article  Google Scholar 

  52. Muslim M, Romshoo SA, Rather AQ (2015) Paddy crop yield estimation in Kashmir Himalayan rice bowl using remote sensing and simulation model. Environ Monit Assess 187(6):316. https://doi.org/10.1007/s10661-015-4564-9

    Article  Google Scholar 

  53. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part 1: a discussion of principles. J Hydrol 10(3):282–290. https://doi.org/10.1126/science.1107046

    Article  Google Scholar 

  54. Nuimura T, Sakai A, Taniguchi K et al (2015) The gamdam glacier inventory: a quality-controlled inventory of Asian glaciers. Cryosphere 9(3). https://doi.org/10.5194/tc-9-849-2015

  55. Oerlemans J (2005) Extracting a Climate Signal from 169 Glacier Records. Sci 308(5722):675–67. https://doi.org/10.1126/science.1107046

    Article  Google Scholar 

  56. Pearson K (1897) Mathematical contributions to the theory of evolution. On telegony In Man & C Proc R Soc Lond 60(359–367):273–283. https://doi.org/10.1098/rspl.1896.0048

    Article  Google Scholar 

  57. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 4(2):439–473. https://doi.org/10.5194/hess-11-1633-2007

    Article  Google Scholar 

  58. Phillips TJ, Bonfils CJW (2015) Köppen bioclimatic evaluation of CMIP historical climate simulations. Environ. Res Lett 10(6). https://doi.org/10.1088/1748-9326/10/6/064005

  59. Rashid I, Romshoo SA, Vijayalakshmi T (2013) Geospatial landscape modelling for identifying disturbance regimes and biodiversity rich areas in western Himalayas. Biodivers Conserv 22(11):2537–2566. https://doi.org/10.1007/s10531-013-0538-9

    Article  Google Scholar 

  60. Rashid I, Romshoo SA, Chaturvedi RK, Ravindranath NH et al (2015) Projected climate change impacts on vegetation distribution over Kashmir Himalayas. Clim Chang 132(4):601–613. https://doi.org/10.1007/s10584-015-1456-5

    Article  Google Scholar 

  61. Rashid I, Romshoo SA, Abdullah T (2017) The recent deglaciation of Kolahoi valley in Kashmir Himalaya, India in response to the changing climate. J Asian Earth Sci 138:38–50. https://doi.org/10.1016/j.jseaes.2017.02.002

    Article  Google Scholar 

  62. Romshoo SA, Rashid I (2014) Assessing the impacts of changing land cover and climate on Hokersar wetland in Indian Himalayas. Arab J Geosci 7(1):143–160. https://doi.org/10.1007/s12517-012-0761-9

    Article  Google Scholar 

  63. Romshoo SA, Dar RA, Rashid I et al (2015) Implications of shrinking cryosphere under changing climate on the streamflows in the Lidder catchment in the upper Indus Basin, India. Arct Antarct Alp Res 47(4):627–644. https://doi.org/10.1657/AAAR0014-088

    Article  Google Scholar 

  64. Romshoo SA, Altaf S, Rashid I et al (2018) Climatic, geomorphic and anthropogenic drivers of the 2014 extreme flooding in the Jhelum basin of Kashmir, India. Geomat Nat Haz Risk 9(1):224–248. https://doi.org/10.1080/19475705.2017.1417332

    Article  Google Scholar 

  65. Romshoo SA, Rashid I, Altaf A, Dar GH (2020). Jammu and Kashmir state: an overview. In: biodiversity of the Himalaya: Jammu and Kashmir state springer, Singapore, pp 129-166 https://doi.org/10.1007/978-981-32-9174-4_6

  66. Roy PS, Behera MD, Murthy MSR et al (2015) New vegetation type map of India prepared using satellite remote sensing: comparison with global vegetation maps and utilities. Int J Appl Earth Obs 39:142–159. https://doi.org/10.1016/j.jag.2015.03.003

    Article  Google Scholar 

  67. Rubel F, Kottek M (2010) Observed and projected climate shifts 1901−2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol Z 19:135–141. https://doi.org/10.1127/0941-2948/2010/0430

    Article  Google Scholar 

  68. Sanjay J, Krishnan R, Shrestha AB et al (2017) Downscaled climate change projections for the Hindu Kush Himalayan region using CORDEX South Asia regional climate models. Adv Clim Chang Res 8(3):185–198. https://doi.org/10.1016/j.accre.2017.08.003

    Article  Google Scholar 

  69. Shah RDT, Narayan D, Domisch S (2012) Range shifts of a relict Himalayan dragonfly in the Hindu Kush Himalayan region under climate change scenarios. Int J Odonatol 15(3):209–222. https://doi.org/10.1080/13887890.2012.697399

    Article  Google Scholar 

  70. Sharma KP, Vorosmarty CJ, Moore B (2000) Sensitivity of the Himalayan hydrology to land-use and climatic changes. Clim Chang 47(1–2):117–139

    Article  Google Scholar 

  71. Singh P, Bengtsson L (2004) Hydrological sensitivity of a large Himalayan basin to climate change. Hydrol Process 18(13):2363–2385. https://doi.org/10.1002/hyp.1468

    Article  Google Scholar 

  72. Singh CP, Panigrahy S, Thapliyal A et al (2012) Monitoring the alpine treeline shift in parts of the Indian Himalayas using remote sensing. Curr Sci 102(4):559–562. https://doi.org/10.1073/pnas.0812721106

    Article  Google Scholar 

  73. Tabor K, Williams JW (2010) Globally downscaled climate projections for assessing the conservation impacts of climate change. Ecol Appl 20(2):554–565. https://doi.org/10.1890/09-0173.1

    Article  Google Scholar 

  74. Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427(6970):145. https://doi.org/10.1038/nature02121

    Article  Google Scholar 

  75. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38(1):55–94

    Article  Google Scholar 

  76. Trewartha GT, Horn LH (1980) Köppen’s classification of climates. An Introduction to climate. McGraw-Hill, New York, pp 397–403

    Google Scholar 

  77. World Bank (1960) Indus Water Treaty. https://treaties.un.org/doc/ Publication/UNTs/Volume%20419/volume-419-I-6032-English.pdf

  78. World Health Organization (2003) Climate change and human health: risks and responses: summary. WHO, Geneva

    Google Scholar 

  79. Xu J, Grumbine RE, Shrestha EM et al (2009) The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Biol Conserv 23(3):520–530. https://doi.org/10.1111/j.1523-1739.2009.01237.x

    Article  Google Scholar 

  80. Xue X, Hong Y, Limaye AS et al (2013) Statistical and hydrological evaluation of TRMM-based multi-satellite precipitation analysis over the Wangchu Basin of Bhutan: are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? J Hydrol 499:91–99. https://doi.org/10.1016/j.jhydrol.2013.06.042

    Article  Google Scholar 

  81. Zaz SN, Romshoo SA, Ramkumar TK (2019) Analyses of temperature and precipitation in the Indian Jammu and Kashmir region for the 1980–2016 period: implications for remote influence and extreme events. Atmos Chem Phys 19:15–37

    Article  Google Scholar 

Download references

Acknowledgments

The research work was conducted as part of the MoEF & CC, Government of India–sponsored national research project under the National Mission on Himalayan Studies titled “Integrated system dynamical model to design and testing alternative intervention strategies for effective remediation & sustainable water management for 2 selected river basins of Indian Himalaya”. We express our gratitude to the 2 anonymous reviewers for the very elaborative and useful review of the manuscript which has greatly improved the quality of the manuscript.

Funding

Jasia Bashir acknowledges the financial support from DST, Govt. of India, for the WOS-A fellowship under grant no. SR/WOS-A/EA-20/2018 (G). The financial assistance received from the sponsors under the project is thankfully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shakil Ahmad Romshoo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. S4
figure4

(PNG 6.95 mb)

High Resolution Image (TIF 2.84 mb)

ESM 2

(GIF 50.7 kb)

ESM 3

(DOCX 12.4 kb)

ESM 4

(DOCX 29.9 kb)

ESM 5

(DOCX 12.5 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Romshoo, S.A., Bashir, J. & Rashid, I. Twenty-first century-end climate scenario of Jammu and Kashmir Himalaya, India, using ensemble climate models. Climatic Change 162, 1473–1491 (2020). https://doi.org/10.1007/s10584-020-02787-2

Download citation

Keywords

  • Climate change
  • Climate classification
  • Downscaled climate projections
  • Kashmir Himalaya