Climate change drives increase in modeled HIV prevalence

Abstract

Long-term changes in temperature can negatively affect human livelihoods with resulting implications for health outcomes. While increasing attention has been paid to the direct health consequences of climate change, there has been less focus on indirect health effects, partly due to the relative complexity of establishing and modeling these outcomes. Here, I leverage a dataset of over 400,000 individuals across 25 countries in Sub-Saharan Africa, coupled with high-resolution climate data for the region, to test the effect of long-run temperature changes on HIV prevalence. I find that warmer periods are linked with an increase in HIV prevalence, particularly for younger generations. Both economic and behavioral changes likely drive this linkage: I find evidence that male migration and sex-market use increase with higher temperatures. I generate projections for future HIV prevalence using two methods. First, I project directly using the empirical estimate, an approach frequently used in econometric studies of climate change impacts. Second, I develop a mechanistic model of HIV spread, incorporating the estimated temperature effect. I find that agreement between the models is strong (77%). Under the RCP8.5 scenario for warming, I find that climate change will lead to between 11.6 and 16.0 million additional cases of HIV by 2050, an increase in prevalence of 1.4–2.1 percentage points.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Anderson RM, May RM (1992) Infectious diseases of humans: dynamics and control. Oxford University Press

  2. Anema A, Vogenthaler N, Frongillo EA, Kadiyala S, Weiser SD (2009) Food insecurity and hiv/aids: current knowledge, gaps, and research priorities. Curr HIV/AIDS Rep 6(4):224–231

    Article  Google Scholar 

  3. Auffhammer M, Hsiang SM, Schlenker W, Sobel A (2013) Using weather data and climate model output in economic analyses of climate change. Rev Environ Econ Policy 7(2):181–198

    Article  Google Scholar 

  4. Baker RE, Mahmud AS, Metcalf CJE (2018) Dynamic response of airborne infections to climate change: predictions for varicella. Clim Chang 148:547–560

    Article  Google Scholar 

  5. Barreca AI, Shimshack JP (2012) Absolute humidity, temperature, and influenza mortality: 30 years of county-level evidence from the united states. Amer J Epidemiol 176(suppl 7):S114–S122

    Article  Google Scholar 

  6. Barros V, Field C, Dokke D, Mastrandrea M, Mach K, Bilir T, Chatterjee M, Ebi K, Estrada Y, Genova R et al (2015) Climate change 2014: impacts, adaptation, and vulnerability. part b: regional aspects. contribution of working group ii to the fifth assessment report of the intergovernmental panel on climate change

  7. Bohra-Mishra P, Oppenheimer M, Hsiang SM (2014) Nonlinear permanent migration response to climatic variations but minimal response to disasters. Proc Natl Acad Sci 111(27):9780–9785

    Article  Google Scholar 

  8. Bolton S (2010) Interactions between HIV/AIDS and the environment: A review of the evidence and recommendations for next steps. IUCN

  9. Brockerhoff M, Biddlecom AE (1999) Migration, sexual behavior and the risk of hiv in kenya. International Migration Review:833–856

  10. Burke M, Gong E, Jones K (2014) Income shocks and hiv in africa. The Economic Journal

  11. Burke M, Hsiang SM, Miguel E (2015) Global non-linear effect of temperature on economic production. Nature 527(7577):235

    Article  Google Scholar 

  12. Carleton TA, Hsiang SM (2016) Social and economic impacts of climate. Science 353(6304):aad9837

  13. Carleton TA (2017) Crop-damaging temperatures increase suicide rates in india. Proceedings of the National Academy of Sciences, pp 201701354

  14. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, Hakim JG, Kumwenda J, Grinsztejn B, Pilotto JH et al (2011) Prevention of hiv-1 infection with early antiretroviral therapy. Engl J Med 365 (6):493–505

    Article  Google Scholar 

  15. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, Hakim JG, Kumwenda J, Grinsztejn B, Pilotto JH, Godbole SV, Chariyalertsak S, Santos BR, Mayer KH, Hoffman IF, Eshleman SH, Piwowar-Manning E, Cottle L, Zhang XC, Makhema J, Mills LA, Panchia R, Faesen S, Eron J, Gallant J, Havlir D, Swindells S, Elharrar V, Burns D, Taha TE, Nielsen-Saines K, Celentano DD, Essex M, Hudelson SE, Redd AD, Fleming TR (2016) Antiretroviral Therapy for the Prevention of HIV-1 Transmission. Engl J Med 375(9):830–839

  16. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G et al (2013) Long-term climate change: projections, commitments and irreversibility

  17. Decosas J, Kane F, Anarfi JK, Sodji K, Wagner H (1995) Migration and aids. Lancet 346(8978):826–8

    Article  Google Scholar 

  18. Dell M, Jones BF, Olken BA (2014) What do we learn from the weather? the new climate–economy literature. J Econ Lit 52(3):740–798

    Article  Google Scholar 

  19. Deschenes O, Moretti E (2009) Extreme weather events, mortality, and migration. Rev Econ Stat 91(4):659–681

    Article  Google Scholar 

  20. Dunkle KL, Jewkes RK, Brown HC, Gray GE, McIntryre JA, Harlow SD (2004) Transactional sex among women in soweto, south africa: prevalence, risk factors and association with hiv infection. Soc Sci Med 59(8):1581–1592

    Article  Google Scholar 

  21. Engelman R (2009) The state of world population 2009. facing a changing world: Women, population and climate. In: The state of world population 2009. Facing a changing world: Women, population and climate. UNFPA

  22. Fenton KA, Johnson AM, McManus S, Erens B (2001) Measuring sexual behaviour: methodological challenges in survey research. Sexuall Transm Infect 77(2):84–92

    Article  Google Scholar 

  23. Gillespie S, Kadiyala S (2005) HIV/AIDS and food and nutrition security: From evidence to action, vol 7. Intl Food Policy Res Inst

  24. Gillingham K, Nordhaus WD, Anthoff D, Blanford G, Bosetti V, Christensen P, McJeon H, Reilly J, Sztorc P (2015) Modeling uncertainty in climate change: a multi-model comparison. Technical report, National Bureau of Economic Research

  25. Gommes R, du Guerny J, Glantz MH, Hsu L-N (2004) Climate and hiv/aids: a hotspots analysis for early warning rapid response systems

  26. Gray C, Mueller V (2012a) Drought and population mobility in rural ethiopia. World Dev 40(1):134–145

  27. Gray CL, Mueller V (2012b) Natural disasters and population mobility in bangladesh. Proc Natl Acad Sci 109(16):6000–6005

  28. Henry S, Schoumaker B, Beauchemin C (2004) The impact of rainfall on the first out-migration: a multi-level event-history analysis in burkina faso. Popul Environ 25(5):423–460

    Article  Google Scholar 

  29. Hethcote HW, Yorke J (2014) Gonorrhea transmission dynamics and control, vol 56. Springer

  30. Hsiang SM, Burke M, Miguel E (2013) Quantifying the influence of climate on human conflict. Science 341(6151):1235367

    Article  Google Scholar 

  31. Jayachandran S (2009) Air quality and early-life mortality evidence from indonesia’s wildfires. J Hum Resour 44(4):916–954

    Google Scholar 

  32. Jochelson K, Mothibeli M, Leger J-P (1991) Human immunodeficiency virus and migrant labor in south africa. Int J Health Serv 21(1):157–173

    Article  Google Scholar 

  33. Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319(5863):607–610

    Article  Google Scholar 

  34. Lobell DB, Bänziger M, Magorokosho C, Vivek B (2011) Nonlinear heat effects on african maize as evidenced by historical yield trials. Nat Clim Chang 1 (1):42–45

    Article  Google Scholar 

  35. Lobell DB, Asseng S (2017) Comparing estimates of climate change impacts from process-based and statistical crop models. Environ Res Lett 12(1):015001

    Article  Google Scholar 

  36. Marchiori L, Maystadt J-F, Schumacher I (2012) The impact of weather anomalies on migration in sub-saharan africa. J Environ Econ Manag 63(3):355–374

    Article  Google Scholar 

  37. Mepham S, Zondi Z, Mbuyazi A, Mkhwanazi N, Newell M (2011) Challenges in pmtct antiretroviral adherence in northern kwazulu-natal, south africa. AIDS Care 23(6):741–747

    Article  Google Scholar 

  38. Metcalf CJE, Walter KS, Wesolowski A, Buckee CO, Shevliakova E, Tatem AJ, Boos WR, Weinberger DM, Pitzer VE (2017) Identifying climate drivers of infectious disease dynamics: recent advances and challenges ahead. Proc R Soc B: Biol Sci 284(1860):20170901

    Article  Google Scholar 

  39. Miller CL, Bangsberg DR, Tuller DM, Senkungu J, Kawuma A, Frongillo EA, Weiser SD (2011) Food insecurity and sexual risk in an hiv endemic community in uganda. AIDS Behav 15(7):1512–1519

    Article  Google Scholar 

  40. Mishra S, Steen R, Gerbase A, Lo Y-R, Boily M-C (2012) Impact of high-risk sex and focused interventions in heterosexual hiv epidemics: a systematic review of mathematical models. PLoS One 7(11):e50691

    Article  Google Scholar 

  41. Missirian A, Schlenker W (2017) Asylum applications respond to temperature fluctuations. Science 358(6370):1610–1614

    Article  Google Scholar 

  42. Pascoe SJ, Langhaug LF, Mavhu W, Hargreaves J, Jaffar S, Hayes R, Cowan FM (2015) Poverty, food insufficiency and hiv infection and sexual behaviour among young rural zimbabwean women. PLoS One 10(1):e0115290

    Article  Google Scholar 

  43. Robinson J, Yeh E (2011) Transactional sex as a response to risk in western kenya. Amer Econ J Appl Econ 3(1):35–64

    Article  Google Scholar 

  44. Schlenker W, Lobell DB (2010) Robust negative impacts of climate change on african agriculture. Environ Res Lett 5(1):014010

    Article  Google Scholar 

  45. Schuyler AC, Edelstein ZR, Mathur S, Sekasanvu J, Nalugoda F, Gray R, Wawer MJ, Serwadda DM, Santelli JS (2017) Mobility among youth in rakai, uganda: trends, characteristics, and associations with behavioural risk factors for hiv. Glob Publ Health 12(8):1033–1050

    Article  Google Scholar 

  46. Shannon K, Kerr T, Milloy M, Anema A, Zhang R, Montaner JS, Wood E (2011) Severe food insecurity is associated with elevated unprotected sex among hiv-seropositive injection drug users independent of haart use. AIDS (Lond Engl) 25 (16):2037

    Article  Google Scholar 

  47. Sheffield J, Goteti G, Wood EF (2006) Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J Clim 19(13):3088–3111

    Article  Google Scholar 

  48. Talman A, Bolton S, Walson JL (2013) Interactions between hiv/aids and the environment: toward a syndemic framework. Amer J Publ Health 103(2):253–261

    Article  Google Scholar 

  49. Tsai AC, Hung KJ, Weiser SD (2012) Is food insecurity associated with hiv risk? cross-sectional evidence from sexually active women in brazil. PLoS Med 9 (4):e1001203

    Article  Google Scholar 

  50. UNAIDS U (2008) Climate change and aids: A joint working paper

  51. Vynnycky E, White R (2010) An introduction to infectious disease modelling. Oxford University Press

  52. Weiser SD, Leiter K, Bangsberg DR, Butler LM, Percy-de Korte F, Hlanze Z, Phaladze N, Iacopino V, Heisler M (2007) Food insufficiency is associated with high-risk sexual behavior among women in Botswana and swaziland. PLoS Med 4 (10):e260

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rachel E. Baker.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 324 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baker, R.E. Climate change drives increase in modeled HIV prevalence. Climatic Change 163, 237–252 (2020). https://doi.org/10.1007/s10584-020-02753-y

Download citation

Keywords

  • Climate change impacts
  • Indirect effects
  • HIV