Skip to main content

Future distribution of early life stages of small pelagic fishes in the northwestern Mediterranean

A Correction to this article was published on 19 June 2020

This article has been updated

Abstract

We studied the effect of climate change on the potential spawning habitats of two marine small pelagic fishes. We examined the projected changes in the potential spawning habitat of the summer-spawning anchovy (Engraulis encrasicolus) and round sardinella (Sardinella aurita) in the northwestern Mediterranean by combining the regionalized projections of RCP scenarios with an existing species distribution model (SDM). The SDM was based on a separate generalized additive model for the eggs and larvae of the two species computed from ichthyoplankton sampling that was conducted with simultaneous readings of surface temperature, salinity and chlorophyll-a values as predictor variables. The SDM was projected for the 2010 decade, which represented the present-day conditions, with these environmental variables obtained from the regionalized POLCOMS-ERSEM biogeochemical model forced by the RCP 4.5 and RCP 8.5 scenarios. The comparison of the present-day projection results with the projections for the middle and final decades of the twenty-first century showed that the suitability of the spawning habitat as defined by the anchovy eggs model was likely to increase over time under RCP4.5 or decrease slightly under RCP8.5, but the habitat for anchovy larvae was likely to decrease in all cases. Loss of habitat was projected to be particularly important in the south of the study area on the Ebre River delta continental shelf. Conversely, the probability of round sardinella occurrence will significantly increase under both scenarios. The potential habitat of this species, which is of subtropical origin, is likely to shift northwards. The limitations of the existing models to extrapolate the current results to future scenarios are discussed regarding (i) the uncertainty in the projections of driving environmental variables (e.g., chlorophyll-a), (ii) the simplified nature of the projection models, which did not capture the dynamics of the early life stages of the fish at a small scale, and (iii) insufficient consideration of important drivers, such as larval transport or retention by mesoscale hydrographic phenomena.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Change history

  • 19 June 2020

    The original article has been corrected. A mistake in the author name E. Ram��rez-Romero has been corrected.

References

  1. Alexander MA, Scott JD, Friedland KD et al (2018) Projected sea surface temperatures over the 21st century: changes in the mean, variability and extremes for large marine ecosystem regions of northern oceans. Elem Sci Anth 6(1):9. https://doi.org/10.1525/elementa.191

    Article  Google Scholar 

  2. Asch RG, Stock CA, Sarmiento JL (2019) Climate change impacts on mismatches between phytoplankton blooms and fish spawning phenology. Glob Change Biol 25:2544–2559. https://doi.org/10.1111/gcb.14650

    Article  Google Scholar 

  3. Azzurro E, Moschella P, Maynou F (2011) Tracking signals of change in Mediterranean fish diversity based on local ecological knowledge. PLoS One 6(9):e24885. https://doi.org/10.1371/journal.pone.0024885

    Article  Google Scholar 

  4. Bakun A (2006) Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage. Sci Mar 70(S2):105–122

    Article  Google Scholar 

  5. Brosset P, Menard F, Fromentin J, Bonhommeau S, Ulses C, Bourdeix J, Bigot J et al (2015) Influence of environmental variability and age on the body condition of small pelagic fish in the Gulf of Lions. Mar Ecol Prog Ser 529:219–231. https://doi.org/10.3354/meps11275

    Article  Google Scholar 

  6. Brown CJ, Schoeman DS, Sydeman WJ, Brander K, Buckley LB, Burrows M, Duarte CM, Moore PJ, Pandolfi JM, Poloczanska E, Venables W, Richardson AJ (2011) Quantitative approaches in climate change ecology. Glob Chang Biol 17:3697–3713. https://doi.org/10.1111/j.1365-2486.2011.02531.x

    Article  Google Scholar 

  7. Butenschön M, Clark J, Aldridge JN, Allen JI, Artioli Y, Blackford J, Bruggeman J, Cazenave P, Ciavatta S, Kay S, Lessin G, van Leeuwen S, van der Molen J, de Mora L, Polimene L, Sailley S, Stephens N, Torres R (2016) ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels. Geosci Model Dev. 9:1293–1339. https://doi.org/10.5194/gmd-9-1293-2016

    Article  Google Scholar 

  8. Catalán IA, Auch D, Kamermans P, Morales-Nin B, Angelopoulos NV, Reglero P, Sandersfeld T, Peck MA (2019) Critically examining the knowledge base required to mechanistically project climate impacts: a case study of Europe's fish and shellfish. Fish Fish 20(3):501–517. https://doi.org/10.1111/faf.12359

    Article  Google Scholar 

  9. Checkley DM Jr, Alheit J, Oozeki Y, Roy C (2009) Climate change and small pelagic fish. Cambridge University Press, Cambridge 372 pp

    Google Scholar 

  10. Checkley DM Jr, Asch RG, Rykaczewski RR (2017) Climate, anchovy, and sardine. Annu Rev Mar Sci 9:469–493. https://doi.org/10.1146/annurev-marine-122414-033819

    Article  Google Scholar 

  11. Ciavatta S, Kay S, Brewin RJW, Cox R, Di Cicco A, Nencioli F, Polimene L, Sammartino M, Santoleri R, Skákala J, Tsapakis M (2019) Ecoregions in the Mediterranean Sea through the reanalysis of phytoplankton functional types and carbon fluxes. J Geophys Res Ocean (in press). https://doi.org/10.1029/2019JC015128

  12. CIESM (2008) Climate warming and related changes in Mediterranean marine biota. CIESM Workshop Monographs, 35. Monaco. 152 pp

  13. Colella S, Falcini F, Rinaldi E, Sammartino M, Santoleri R (2016) Mediterranean Ocean colour chlorophyll trends. PLoS One 11(6):e0155756. https://doi.org/10.1371/journal.pone.0155756

    Article  Google Scholar 

  14. Coll M, Albo-Puigserver M, Navarro J, Palomera I, Dambacher JM (2018) Who is to blame? Plausible pressures on small pelagic fish population changes in the northwestern Mediterranean Sea. Mar Ecol Prog Ser. 617-618:277–294. https://doi.org/10.3354/meps12591

    Article  Google Scholar 

  15. Coma R, Ribes M, Serrano E, Jiménez E, Salat J, Pascual J (2009) Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc Nat Acad Sci USA 106(15):6176–6181. https://doi.org/10.1073/pnas.0805801106

    Article  Google Scholar 

  16. Dulvy NK, Rogers SI, Jennings S, Stetzenmüller V, Dye SR, Skjoldal HR (2008) Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J Appl Ecol 45:1029–1039

    Article  Google Scholar 

  17. Durrieu de Madron X et al (2011) Marine ecosystems’ responses to climatic and anthropogenic forcings in the Mediterranean. Prog Oceanogr 91:97–166

    Article  Google Scholar 

  18. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  19. Erauskin-Extramiana M, Alvarez P, Arrizabalaga H, Ibaibarriaga L, Uriarte A, Cotano U, Santos M, Ferrer L, Cabré A, Irigoien X, Chust G (2019) Historical trends and future distribution of anchovy spawning in the Bay of Biscay. Deep Sea Res Part II Top Stud Oceanogr 159:169–182. https://doi.org/10.1016/j.dsr2.2018.07.007

    Article  Google Scholar 

  20. Estrada M (1996) Primary production in the northwestern Mediterranean. Sci Mar 60:55–64

    Google Scholar 

  21. Estrada M, Marrasé C, Latasa M, Berdalet E, Delgado M, Riera T (1993) Variability of deep chorophyll maximum characteristics in the northwestern Mediterranean. Mar Ecol Prog Ser 92:289–300

    Article  Google Scholar 

  22. Font J, Salat J, Tintoré J (1988) Permanent features of the circulation in the Catalan Sea. In: Minas HJ, Nival P (eds) Pelagic Mediterranean oceanography. Oceanol Acta, vol 9, pp 51–57

    Google Scholar 

  23. Giannoulaki M, Iglesias M, Tugores MP, Bonanno A, Patti B et al (2013) Characterizing the potential habitat of European anchovy Engraulis encrasicolus in the Mediterranean Sea, at different life stages. Fish Oceanog 22(2):68–89

    Article  Google Scholar 

  24. Gudmundsson L, Bremnes JB, Haugen JE, Engen-Skaugen T (2012) Technical note: downscaling RCM precipitation to the station scale using statistical transformations -- a comparison of methods. Hydrol Earth Syst Sci 16:3383–3390. https://doi.org/10.5194/hess-16-3383-2012

    Article  Google Scholar 

  25. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  26. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  27. Halpern BS, Walbridge S, Selkoe KA et al (2008) A global map of human impact on marine ecosystems. Science 319(5865):948–953. https://doi.org/10.1126/science.1149345

    Article  Google Scholar 

  28. Hiddink JG, Burrows MT, Molinos JG (2015) Temperature tracking by North Sea benthic invertebrates in response to climate change. Glob. Change Biol. 21:117–129. https://doi.org/10.1111/gcb.12726

    Article  Google Scholar 

  29. Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A (2006) Evaluating the ability of habitat suitability models to predict species presences. Ecol Model 199:142–152

    Article  Google Scholar 

  30. Holt JT, James ID, Jones JE (2001) An s coordinate density evolving model of the northwest European continental shelf 1, model description and density structure. J Geophys Res 106:14015–14034. https://doi.org/10.1029/2000JC000304

    Article  Google Scholar 

  31. Holt J, Wakelin S, Lowe J, Tinker J (2010) The potential impacts of climate change on the hydrography of the northwest European continental shelf. Prog Oceanogr 86(3-4):361–379. https://doi.org/10.1016/j.pocean.2010.05.003

    Article  Google Scholar 

  32. Holt J, Butenschön M, Wakelin SL, Artioli Y, Allen JI (2012) Oceanic controls on the primary production of the northwest European continental shelf: model experiments under recent past conditions and a potential future scenario. Biogeosciences 9:97–117. https://doi.org/10.5194/bg-9-97-2012

    Article  Google Scholar 

  33. Iona A, Theodorou A, Sofianos S, Sylvain W, Troupin C, Beckers J-M (2018) Mediterranean Sea climatic indices: monitoring long-term variability and climate changes. Earth Syst Sci Data 10:1829–1842. https://doi.org/10.5194/essd-10-1829-2018

    Article  Google Scholar 

  34. Kay S, Butenschön M (2018) Projections of change in key ecosystem indicators for planning and management of marine protected areas: an example study for European seas. Est Coast Shelf Sci. 201:172–184. https://doi.org/10.1016/j.ecss.2016.03.003

    Article  Google Scholar 

  35. Kay S, Andersson H, Catalan I, Eilola K, Jordà G, Ramirez-Romero E, Wehde W (2018) Projections of physical and biogeochemical parameters and habitat indicators for European seas, including synthesis of sea level rise and storminess. H2020 CERES project deliverable D1.3, https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b9fdf8fb&appId=PPGMS

  36. Lacroix G, Barbut L, Volckaert FAM (2018) Complex effect of projected sea temperature and wind change on flatfish dispersal. Glob Chang Biol 24(1):85–100

    Article  Google Scholar 

  37. Macias D, Garcia-Gorriz E, Stips A (2015) Productivity changes in the Mediterranean Sea for the twenty-first century in response to changes in the regional atmospheric forcing. Front Mar Sci 16:76. https://doi.org/10.3389/fmars.2015.00079

  38. Macias D, Garcia-Gorriz E, Stips A (2018) Deep winter convection and phytoplankton dynamics in the NW Mediterranean Sea under present climate and future (horizon 2030) scenarios. Sci Rep 8:1–15

    Article  Google Scholar 

  39. Martín P, Sabatés A, Lloret J, Martin-Vide J (2012) Climate modulation of fish populations: the role of the Western Mediterranean oscillation (WeMO) in sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) production in the North-Western Mediterranean. Clim Change 110:925–939. https://doi.org/10.1007/s10584-011-0091-z

    Article  Google Scholar 

  40. Maynou F (2014) Co-viability analysis of Western Mediterranean fisheries under MSY scenarios for 2020. ICES J Mar Sci 71(7):1563–1571. https://doi.org/10.1093/icesjms/fsu061

    Article  Google Scholar 

  41. Maynou F, Sabatés A, Salat J (2014) Clues from the recent past to assess recruitment of Mediterranean small pelagic fishes under sea warming scenarios. Clim Change 126(1-2):175–188. https://doi.org/10.1007/s10584-014-1194-0

    Article  Google Scholar 

  42. Maynou F, Sabatés A, Raya V (2020) Changes in the spawning habitat of two small pelagic fish in the northwestern Mediterranean. Fish Oceanogr. https://doi.org/10.1111/fog.12464

  43. Millot C (1999) Circulation in the western Mediterranean Sea. J Mar Syst 20:423–442

    Article  Google Scholar 

  44. Nevárez-Martínez MO, Lluch-Belda D, Cisneros-Mata MA, Santos-Molina JP, Martínez-Zavala MDLA, Lluch-Cota SE (2001) Distribution and abundance of the Pacific sardine (Sardinops sagax) in the Gulf of California and their relation with the environment. Prog Oceanogr 49:565–580

    Article  Google Scholar 

  45. Olivar MP, Salat J, Palomera I (2001) Comparative study of spatial distribution patterns of the early stages of anchovy and pilchard in the NW Mediterranean Sea. Mar Ecol Prog Ser 217:111–120

    Article  Google Scholar 

  46. Olivar MP, Emelianov M, Villate F, Morote E (2010) The role of oceanographic conditions and plankton availability in larval fish assemblages off the Catalan coast (NW Mediterranean). Fish Oceanogr 19(3):209–229. https://doi.org/10.1111/j.1365-2419.2010.00538.x

    Article  Google Scholar 

  47. Ospina-Alvarez A, Catalán IA, Bernal M, Roos D, Palomera I (2015) From egg production to recruits: connectivity and inter-annual variability in the recruitment patterns of European anchovy in the northwestern Mediterranean. Prog Oceanogr 138:431–447. https://doi.org/10.1016/j.pocean.2015.01.011

    Article  Google Scholar 

  48. Palomera I, Olivar MP, Salat J, Sabatés A, Coll M, García A, Morales-Nin B (2007) Small pelagic fish in the NW Mediterranean Sea: an ecological review. Prog Oceanogr 74:377–396. https://doi.org/10.1016/j.pocean.2007.04.012

    Article  Google Scholar 

  49. Pastor F, Valiente JA, Palau JL (2018) Sea surface temperature in the Mediterranean: trends and spatial patterns (1982–2016). Pure Appl Geophys. 175:4017. https://doi.org/10.1007/s00024-017-1739-z

    Article  Google Scholar 

  50. Patti B, Torri M, Cuttitta A (2020) General surface circulation controls the interannual fluctuations of anchovy stock biomass in the Central Mediterranean Sea. Sci Rep 10:1554. https://doi.org/10.1038/s41598-020-58028-0

  51. Payne MR, Barange M, Cheung WWL, MacKenzie BR, Batchelder HP et al (2016) Uncertainties in projecting climate-change impacts in marine ecosystems. ICES J Mar Sci 73(5):1272–1282

    Article  Google Scholar 

  52. Peck MA, Arvanitidis C, Butenschön M, Canu DM, Chatzinikolaou E et al (2018) Projecting changes in the distribution and productivity of living marine resources: a critical review of the suite of modelling approaches used in the large European project VECTORS. Est Coast Shelf Sci 201:40–55. https://doi.org/10.1016/j.ecss.2016.05.019

    Article  Google Scholar 

  53. Planque B (2016) Projecting the future state of marine ecosystems, “la grande illusion”? ICES J Mar Sci 73:204–208. https://doi.org/10.1093/icesjms/fsv155

    Article  Google Scholar 

  54. Planque B, Bellier E, Lazure P (2007) Modelling potential spawning habitat of sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) in the Bay of Biscay. Fish Oceanogr 16:16–30

    Article  Google Scholar 

  55. Planque B, Loots C, Petitgas P, Lindström U, Vaz S (2011) Understanding what controls the spatial distribution of fish populations using a multi-model approach. Fish Oceanogr 20(1):1–17. https://doi.org/10.1111/j.1365-2419.2010.00546.x

    Article  Google Scholar 

  56. Sabatés A, Martín P, Lloret J, Raya V (2006) Sea warming and fish distribution: the case of the small pelagic fish, Sardinella aurita, in the western Mediterranean. Glob Change Biol 12:2209–2219

    Article  Google Scholar 

  57. Sabatés A, Salat J, Palomera I, Emelianov M, MLF DP, Olivar MP (2007) Advection of anchovy (Engraulis encrasicolus) larvae along the Catalan continental slope (NW Mediterranean). Fish Oceanogr 16(2):130–141. https://doi.org/10.1111/j.1365-2419.2006.00416.x

    Article  Google Scholar 

  58. Sabatés A, Salat J, Raya V, Emelianov M, Segura-Noguera M (2009) Spawning environmental conditions of Sardinella aurita at the northern limit of its distribution range, the western Mediterranean. Mar Ecol Prog Ser 385:227–236. https://doi.org/10.3354/meps08058

    Article  Google Scholar 

  59. Sabatés A, Salat J, Raya V, Emelianov M (2013) Role of mesoscale eddies in shaping the spatial distribution of the coexisting Engraulis encrasicolus and Sardinella aurita larvae in the northwestern Mediterranean. J Mar Syst 111:108–119. https://doi.org/10.1016/j.jmarsys.2012.10.002

    Article  Google Scholar 

  60. Sabatés A, Salat J, Tilves U, Raya V, Purcell JE, Pascual M, Gili JM, Fuentes VL (2018) Pathways for Pelagia noctiluca jellyfish intrusions onto the Catalan shelf and their interactions with early life fish stages. J Marine Syst 187:52–61. https://doi.org/10.1016/j.jmarsys.2018.06.013

    Article  Google Scholar 

  61. Salat J (1996) Review of hydrographic environmental factors that may influence anchovy habitats in northwestern Mediterranean. Sci Mar 60(2):21–32

    Google Scholar 

  62. Salat J, García MA, Cruzado A, Palanques A, Arín L, Gomis D, Guillén J, de León A, Puigdefàbregas J, Sospedra J, Velásquez ZR (2002) Seasonal changes of water mass structure and shelf slope exchanges at the Ebro shelf (NW Mediterranean). Cont Shelf Res 22:327–346

    Article  Google Scholar 

  63. Schär C, Jendritzky G (2004) Climate change: hot news from summer 2003. Nature 432:559–560

    Article  Google Scholar 

  64. Siokou-Frangou I, Christaki U, Mazzocchi MG, Montresor M, Ribera d’Alcalá M, Vaqué D, Zingone A (2010) Plankton in the open Mediterranean Sea: a review. Biogeosciences 7:1543–1586. https://doi.org/10.5194/bg-7-1543-2010

    Article  Google Scholar 

  65. Taboada FG, Anadón R (2016) Determining the causes behind the collapse of a small pelagic fishery using Bayesian population modelling. Ecol Appl 26(3):886–898. https://doi.org/10.1890/15-0006

    Article  Google Scholar 

  66. Van Beveren E, Fromentin J-M, Rouyer T, Bonhommeau S, Brosset P, Saraux C (2016) The fisheries history of small pelagics in the Northern Mediterranean. ICES J Mar Sci 73(6):1474–1485. https://doi.org/10.1093/icesjms/fsw023

    Article  Google Scholar 

Download references

Funding

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement “CERES” No. 678193 and from the Spanish Ministry of Economy and Competitiveness (CTM2010-18874 and CTM2015-68543-R). Eduardo Ramirez-Romero received funding from “Govern de les Illes Balears—Conselleria d’Innovació, Recerca i Turisme, Programa Vicenç Mut.”

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Maynou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: A mistake in the author name E. Ramírez-Romero has been corrected.

Electronic supplementary material

ESM 1

(DOCX 9009 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maynou, F., Sabatés, A., Ramirez-Romero, E. et al. Future distribution of early life stages of small pelagic fishes in the northwestern Mediterranean. Climatic Change 161, 567–589 (2020). https://doi.org/10.1007/s10584-020-02723-4

Download citation

Keywords

  • Anchovy
  • Round sardinella
  • Climate change
  • Northwestern Mediterranean
  • RCP scenarios
  • Eggs
  • Larvae