Balshi MS, McGuire AD, Duffy P, Flannigan M, Kicklighter DW, Melillo J (2009) Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century. Glob Chang Biol 15:1491–1510
Google Scholar
Berch SM, Morris D, Malcolm JR (2011) Intensive forest biomass harvesting and biodiversity in Canada: a summary of relevant issues. For Chron 87:478–487
Google Scholar
Bergeron Y, Gauthier S, Kafka V, Lefort P, Lesieur D (2001) Natural fire frequency for the eastern Canadian boreal forest: consequences for sustainable forestry. Can J For Res 31:384–391
Google Scholar
Bergeron Y, Cyr D, Girardin MP, Carcaillet C (2010) Will climate change drive 21st century burn rates in Canadian boreal forest outside of its natural variability: collating global climate model experiments with sedimentary charcoal data. Int J Wildland Fire 19:1127–1139
Google Scholar
Bernier P, Paré D (2013) Using ecosystem CO2 measurements to estimate the timing and magnitude of greenhouse gas mitigation potential of forest bioenergy. GCB Bioenergy 5:67–72
Google Scholar
Brandão M, Kirschbaum MUF, Cowie AL, Hjuler SV (2019) Quantifying the climate change effects of bioenergy systems: comparison of 15 impact assessment methods. GCB Bioenergy 11:727–743
Google Scholar
Chen J, Colombo SJ, Ter-Mikaelian MT, Heath LS (2014) Carbon profile of the managed forest sector in Canada in the 20th century: sink or source? Environ Sci Technol 48:9859–9866
Google Scholar
Crins WJ, Gray PA, Uhlig PWC, Wester MC (2009) The ecosystems of Ontario, part I: ecozones and ecoregions. Ontario Ministry of Natural Resources, Peterborough, Ontario, Inventory, Monitoring and Assessment, SIB TER IMA TR- 01
Cyr D, Gauthier S, Bergeron Y, Carcaillet C (2009) Forest management is driving the eastern North American boreal forest outside its natural range of variability. Front Ecol Environ 7:519–524
Google Scholar
Environment Canada (2017) National inventory report 1990–2015: greenhouse gas sources and sinks in Canada, Canada’s submission to the United Nations Framework Convention on Climate Change, Environment and Climate Change Canada, Gatineau QC
Erb KH, Kastner T, Plutzar C, Bais ALS, Carvalhais N, Fetzel T, Gingrich S, Haberl H, Lauk C, Niedertscheider M, Pongratz J, Thurner M, Luyssaert S (2018) Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553:73–76
Google Scholar
Etheridge DA, Kayahara GJ (2013) Challenges and implications of incorporating multi-cohort management in northeastern Ontario, Canada: A case study. The Forestry Chronicle 89(03):315–326
Google Scholar
FAOSTAT (2018). Database of food and agriculture statistics of the Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/FO. Accessed 23 November 2018
Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238
Google Scholar
Flannigan MD, Logan KA, Amiro BD, Skinner WR, Stocks BJ (2005) Future area burned in Canada. Clim Chang 72:1–16
Google Scholar
Gauthier S, Lefort P, Bergeron Y, Drapeau P (2002) Time since fire map, age-class distribution and forest dynamics in the Lake Abitibi Model Forest. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Sainte-Foy, QC, Information Report LAU-X-125
Hansen AJ, Spies TA, Swanson FJ, Ohmann JL (1991) Conserving biodiversity in managed forests: lessons from natural forests. Bioscience 41:382–392
Google Scholar
Harmon ME, Ferrell WK, Franklin JF (1990) Effects on carbon storage of conversion of oldgrowth forests to young forests. Science 247:699–702
Google Scholar
Harvey BD, Leduc A, Gauthier S, Bergeron Y (2002) Stand-landscape integration in natural disturbance-based management of the southern boreal forest. For Ecol Manag 155:369–385
Google Scholar
Heath LS, Maltby V, Miner R, Skog KE, Smith JE, Unwin J, Upton B (2010) Greenhouse gas and carbon profile of the U.S. forest products industry value chain. Environ Sci Technol 44:3999–4005
Google Scholar
Hennigar CR, MacLean DA, Amos-Binks LJ (2008) A novel approach to optimize management strategies for carbon stored in both forests and wood products. For Ecol Manag 256:786–797
Google Scholar
Holtsmark B (2012) Harvesting in boreal forests and the biofuel carbon debt. Clim Chang 112:415–428
Google Scholar
Hume AM, Chen HYH, Taylor AR (2018) Intensive forest harvesting increases susceptibility of northern forest soils to carbon, nitrogen and phosphorus loss. J Appl Ecol 55:246–255
Google Scholar
IEA (2019) CO2 emissions from fossil fuel combustion: highlights. International Energy Agency
Google Scholar
IPCC (2006) IPCC guidelines for national greenhouse gas inventories, prepared by the National Greenhouse Gas Inventories Programme, Eggleston HS, Buendia L, Miwa K, Ngara T and Tanabe K (eds), IGES, Japan
IPCC (2014) Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Edenhofer O, Pichs-Madruga R, Sokona Y et al (eds) Cambridge University Press, Cambridge, United Kingdom
Kalt G, Mayer A, Theurl MC, Lauk C, Erb KH, Haberl H (2019) Natural climate solutions versus bioenergy: can carbon benefits of natural succession compete with bioenergy from short rotation coppice? GCB Bioenergy 11:1283–1297
Google Scholar
Kishchuk BE, Morris DM, Lorente M, Keddy T, Sidders D, Quideau S, Thiffault E, Kwiaton M, Maynard D (2016) Disturbance intensity and dominant cover type influence rate of boreal soil carbon change: a Canadian multi-regional analysis. For Ecol Manag 381:48–62
Google Scholar
Kormos CF, Mackey B, DellaSala DA, Kumpe N, Jaeger T, Mittermeier RA, Filardi C (2018) Primary forests: definition, status and future prospects for global conservation In: DellaSala D, Goldstein M (eds) Reference module in earth systems and environmental sciences. Encyclopedia of the Anthropocene 2:31–41
Kurz WA, Apps MJ, Webb TM, McNamee PJ (1992) The carbon budget of the Canadian forest sector: phase I. For Can Northwest Reg, Edmonton, AB. Inf. Rep. NOR-X-326
Kurz W, Beukema S, Apps M (1998) Carbon budget implications of the transition from natural to managed disturbance regimes in forest landscapes. Mitig Adapt Strateg Glob Chang 2:405–421
Google Scholar
Kurz WA, Dymond CC, White TM, Stinson G, Shaw CH, Rampley GJ, Smyth C, Simpson BN, Neilson ET, Trofymow JA, Metsaranta J, Apps MJ (2009) CBM-CFS3: a model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol Model 220:480–504
Google Scholar
Laganière J, Paré D, Thiffault E, Bernier PY (2017) Range and uncertainties in estimating delays in greenhouse gas mitigation potential of forest bioenergy sourced from Canadian forests. GCB Bioenergy 9:358–369
Google Scholar
Lamers P, Junginger M (2013) The ‘debt’ is in the detail: a synthesis of recent temporal forest carbon analyses on woody biomass for energy. Biofuels Bioprod Biorefin 7:373–385
Google Scholar
Law BE, Hudiburg TW, Berner LT, Kent JJ, Buotte PC, Harmon ME (2018) Land use strategies to mitigate climate change in carbon dense temperate forests. Proc Nat Acad Sci 115:3663–3668
Google Scholar
Lemprière TC, Kurz WA, Hogg EH, Schmoll C, Rampley GJ, Yemshanov D, McKenney DW, Gilsenan R, Beatch A, Blain D, Bhatti JS, Krcmar E (2013) Canadian boreal forests and climate change mitigation. Environ Rev 21:293–321
Google Scholar
Mackey BG, McKenney DW, Yang Y-Q, McMahon JP, Hutchinson MF (1996a) Site regions revisited: a climatic analysis of Hills’ site regions for the province of Ontario using a parametric method. Can J For Res 26:333–354
Google Scholar
Mackey BG, McKenney DW, Yang Y-Q, McMahon JP, Hutchinson MF (1996b) Erratum: Site regions revisited: a climatic analysis of Hills’ site regions for the province of Ontario using a parametric method. Can J For Res 26:1112
Google Scholar
Matthews R, Mortimer N, Mackie E, Hatto C, Evans A, Mwabonje O, Randle T, Rolls W, Sayce M, and Tubby I (2014) Carbon impacts of using biomass in bioenergy and other sectors: forests. The Research Agency of the Forestry Commission, Report URN 12D/085
Mitchell SR, Harmon ME, O’Connell KEB (2012) Carbon debt and carbon sequestration parity in forest bioenergy production. GCB Bioenergy 4:818–827
Google Scholar
Nieto A, Alexander KNA (2010) European red list of saproxylic beetles. Publications Office of the European Union, Luxembourg
Google Scholar
Norton M, Baldi A, Buda V et al (2019) Serious mismatches continue between science and policy in forest bioenergy. GCB Bioenergy 11:1256–1263
Google Scholar
OMNR (2001) Forest information manual. Queen’s Printer for Ontario, Toronto
Google Scholar
Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993
Google Scholar
Penner M, Woods M, Parton J, Stinson A (2008) Validation of empirical yield curves for natural-origin stands in boreal Ontario. For Chron 84:704–717
Google Scholar
Potapov P, Hansen MC, Laestadius L, Turubanova S, Yaroshenko A, Thies C, Smith W, Zhuravleva I, Komarova A, Minnemeyer S, Esipova E (2017) The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci Adv 3(e1600821):1–13
Google Scholar
Richter DB, Jenkins DH, Karakash JT, Knight J, McCreery LR, Nemestothy KP (2009) Wood energy in America. Science 323:1432–1433
Google Scholar
Rowe JS (1972) Forest regions of Canada. Department of the Environment, Canadian Forestry Service Publication No. 1300, Ottawa
Sanderson BM, O’Neill BC, Tebaldi C (2016) What would it take to achieve the Paris temperature targets? Geophys Res Lett 43:7133–7142
Google Scholar
Sathre R, O’Connor J (2010) Meta-analysis of greenhouse gas displacement factors of wood product substitution. Environ Sci Pol 13:104–114
Google Scholar
Schlamadinger B, Marland G (1996) The role of forest and bioenergy strategies in the global carbon cycle. Biomass Bioenergy 10:275–300
Google Scholar
Searchinger TD, Hamburg S, Melillo J, Chameides W, Havlik P, Kammen DM, Likens GE, Lubowski RN, Obersteiner M, Oppenheimer M, Robertson GP, Schlesinger WH, Tilman GD (2009) Fixing a critical climate accounting error. Science 326:527–528
Google Scholar
Sharma T, Kurz WA, Stinson G, Pellatt MG, Li Q (2013) A 100-year conservation experiment: impacts on forest carbon stocks and fluxes. For Ecol Manag 310:242–255
Google Scholar
Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol Bull 49:11–41
Google Scholar
Smith W, Cheng R (2016) Canada’s intact forest landscapes updated to 2013. Global Forest Watch Canada, Ottawa
Smyth C, Rampley G, Lemprière TC, Schwab O, Kurz WA (2017) Estimating product and energy substitution benefits in national-scale mitigation analyses for Canada. GCB Bioenergy 9:1071–1084
Google Scholar
Ter-Mikaelian MT, Colombo SJ, Lovekin D, Mckechnie J, Reynolds R, Titus B, Laurin E, Chapman AM, Chen J, Maclean HL (2015) Carbon debt repayment or carbon sequestration parity? Lessons from a forest bioenergy case study in Ontario, Canada. GCB Bioenergy 7:704–716
Google Scholar
Tikkanen O, Martikainen P, Hyvärinen E, Junninen K (2006) Red-listed boreal forest species of Finland: associations with forest structure, tree species, and decaying wood. Ann Zool Fennici 43:373–383
Google Scholar
Triviño M, Pohjanmies T, Mazziotta A, Juutinen A, Podkopaev D, Tortorec E, Mönkkönen M (2017) Optimizing management to enhance multifunctionality in a boreal forest landscape. J Appl Ecol 54:61–70
Google Scholar
Van Wagner CE (1978) Age-class distribution and the forest fire cycle. Can J Restor 8:220–227
Google Scholar
Wan X, Xiao L, Vadeboncoeur MA, Johnson CE, Huang Z (2018) Response of mineral soil carbon storage to harvest residue retention depends on soil texture: a meta-analysis. For Ecol Manag 408:9–15
Google Scholar
Watson JEM, Evans T, Venter O et al (2018) The exceptional value of intact forest ecosystems. Nat Ecol Evol 2:599–610
Google Scholar
Weisser D (2007) A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy 32:1543–1559
Google Scholar
Zhang Y, McKechnie J, Cormier D, Lyng R, Mabee W, Ogino A, Maclean H (2010) Life cycle emissions and cost of producing electricity from coal, natural gas, and wood pellets in Ontario, Canada. Environ Sci Technol 44:538–544
Google Scholar