Projections of fire danger under climate change over France: where do the greatest uncertainties lie?

Abstract

Global warming is expected to increase droughts and heatwaves, and consequently fire danger in southern Europe in the forthcoming decades. However, an assessment of the uncertainties associated with this general trend at regional scales, relevant to decision-making, is still missing. This study aims at assessing potential climate change impacts on fire danger over France through the projection of the widely used Fire Weather Index (FWI) and at quantifying the different sources of climate-driven uncertainty associated with these projections. We used daily climate experiments covering the 1995–2098 period under two scenarios (RCP4.5 and RCP8.5) provided by the EURO-CORDEX initiative. Our results show an overall increase in FWI throughout the century, with the largest absolute increases in the Mediterranean area. Model uncertainty was very high in western France, previously identified as a potential fire-prone region under future climate. In contrast, large increases in FWI in the Mediterranean area showed low uncertainty across models. Besides, analyzing the natural variability of FWI revealed that extreme years under present-day climate could become much more frequent by the end of the century. The FWI is projected to emerge from the background of natural variability by mid-twenty-first century with a summer elevated fire danger three times more likely when summer temperature anomaly exceeds + 2 °C.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abatzoglou JT, Williams AP (2016) Impact of anthropogenic climate change on wildfire across western US forests. Proc Natl Acad Sci 113:11770–11775. https://doi.org/10.1073/pnas.1607171113

    Article  Google Scholar 

  2. Abatzoglou JT, Williams AP, Barbero R (2019) Global emergence of anthropogenic climate change in fire weather indices. Geophys Res Lett. https://doi.org/10.1029/2018GL080959

  3. Amatulli G, Camia A, San-Miguel-Ayanz J (2013) Estimating future burned areas under changing climate in the EU-Mediterranean countries. Sci Total Environ 450:209–222. https://doi.org/10.1016/j.scitotenv.2013.02.014

    Article  Google Scholar 

  4. Barbero R, Curt T, Ganteaume A, Maillé E, Jappiot M, Bellet A (2019) Simulating the effects of weather and climate on large wildfires in France. Nat Hazards Earth Syst Sci 19:441–454. https://doi.org/10.5194/nhess-19-441-2019

    Article  Google Scholar 

  5. Bedia J, Herrera S, Camia A et al (2014) Forest fire danger projections in the Mediterranean using ENSEMBLES regional climate change scenarios. Clim Chang 122:185–199. https://doi.org/10.1007/s10584-013-1005-z

    Article  Google Scholar 

  6. Cannon AJ (2018) Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables. Clim Dyn 50:31–49. https://doi.org/10.1007/s00382-017-3580-6

    Article  Google Scholar 

  7. Cannon AJ, Sobie SR, Murdock TQ (2015) Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J Clim 28:6938–6959. https://doi.org/10.1175/JCLI-D-14-00754.1

    Article  Google Scholar 

  8. Chatry C, Le Gallou J, Le Quentrec M, Lafitte J, Laurens D, Creuchet D, Grelu, J (2010) Rapport de la mission interministérielle ‘Changements climatiques et extension des zones sensibles aux feux de forêts’. Rapport Min. Alimentation Agriculture Pêche n° 1796. (Paris)

  9. Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3:52–58. https://doi.org/10.1038/nclimate1633

    Article  Google Scholar 

  10. De Cáceres M, Martin-StPaul N, Turco M, Cabon A, Granda V (2018) Estimating daily meteorological data and downscaling climate models over landscapes. Environ Model Softw 108:186–196. https://doi.org/10.1016/j.envsoft.2018.08.003

    Article  Google Scholar 

  11. Deser C, Phillips A, Bourdette V, Teng H (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38:527–546. https://doi.org/10.1007/s00382-010-0977-x

    Article  Google Scholar 

  12. Dowdy AJ, Mills GA, Finkele K, de Groot W (2010) Index sensitivity analysis applied to the Canadian Forest Fire Weather Index and the McArthur Forest Fire Danger Index. Met Apps 17:298–312. https://doi.org/10.1002/met.170

    Article  Google Scholar 

  13. Dupire S, Curt T, Bigot S (2017) Spatio-temporal trends in fire weather in the French Alps. Sci Total Environ 595:801–817. https://doi.org/10.1016/j.scitotenv.2017.04.027

    Article  Google Scholar 

  14. Dupuy J, Fargeon H, Martin N, Pimont F, Ruffault J, Guijarro M, Hernando C, Madrigal J, Fernandes P (2019) Climate change impact on future wildfire danger and activity in southern Europe: a review. Preprints 2019:100200. https://doi.org/10.20944/preprints201910.0200.v1

    Article  Google Scholar 

  15. Fargeon H, Martin-StPaul N, Pimont F, De Cáceres M, Ruffault J, Opitz T, Dupuy JL (2018) Assessing the increase in wildfire occurrence with climate change and the uncertainties associated with this projection. In: Advances in forest fire research 2018. Viegas, Coimbra. https://doi.org/10.14195/978-989-26-16-506_2

    Chapter  Google Scholar 

  16. Flannigan M, Cantin AS, de Groot WJ, Wotton M, Newbery A, Gowman LM (2013) Global wildland fire season severity in the 21st century. For Ecol Manag 294:54–61. https://doi.org/10.1016/j.foreco.2012.10.022

    Article  Google Scholar 

  17. Fréjaville T, Curt T (2017) Seasonal changes in the human alteration of fire regimes beyond the climate forcing. Environ Res Lett 12:035006. https://doi.org/10.1088/1748-9326/aa5d23

    Article  Google Scholar 

  18. Gillett NP, Weaver AJ, Zwiers FW, Flannigan MD (2004) Detecting the effect of climate change on Canadian forest fires. Geophys Res Lett 31(18):L18211. https://doi.org/10.1029/2004GL020876

    Article  Google Scholar 

  19. Glotter M, Elliott J, McInerney D, Best N, Foster I, Moyer EJ (2014) Evaluating the utility of dynamical downscaling in agricultural impacts projections. Proc Natl Acad Sci 111:8776–8781. https://doi.org/10.1073/pnas.1314787111

    Article  Google Scholar 

  20. Good P, Moriondo M, Giannakopoulos C, Bindi M (2008) The meteorological conditions associated with extreme fire risk in Italy and Greece: relevance to climate model studies. Int J Wildland Fire 17:155. https://doi.org/10.1071/WF07001

    Article  Google Scholar 

  21. Grillakis MG, Koutroulis AG, Daliakopoulos IN, Tsanis IK (2017) A method to preserve trends in quantile mapping bias correction of climate modeled temperature. Earth Syst Dyn 8:889–900. https://doi.org/10.5194/esd-8-889-2017

    Article  Google Scholar 

  22. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1095–1108. https://doi.org/10.1175/2009BAMS2607.1

    Article  Google Scholar 

  23. Hawkins E, Sutton R (2011) The potential to narrow uncertainty in projections of regional precipitation change. Clim Dyn 37:407–418. https://doi.org/10.1007/s00382-010-0810-6

    Article  Google Scholar 

  24. Kotlarski S, Keuler K, Christensen OB, Colette A, Déqué M, Gobiet A, Goergen K, Jacob D, Lüthi D, van Meijgaard E, Nikulin G, Schär C, Teichmann C, Vautard R, Warrach-Sagi K, Wulfmeyer V (2014) Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7:1297–1333. https://doi.org/10.5194/gmd-7-1297-2014

    Article  Google Scholar 

  25. Kovats RS, Valentini R, Bouwer LM, Georgopoulou E, Jacob D, Martin E, Rounsevell M, Soussana JF (2014) Europe. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken, Mastrandrea PR, White LL (eds)] Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1267–1326

  26. Lahaye S, Curt T, Fréjaville T et al (2018) What are the drivers of dangerous fires in Mediterranean France? Int J Wildland Fire 27:155. https://doi.org/10.1071/WF17087

    Article  Google Scholar 

  27. McSweeney CF, Jones RG, Lee RW, Rowell DP (2015) Selecting CMIP5 GCMs for downscaling over multiple regions. Clim Dyn 44:3237–3260. https://doi.org/10.1007/s00382-014-2418-8

    Article  Google Scholar 

  28. Moriondo M, Good P, Durao R et al (2006) Potential impact of climate change on fire risk in the Mediterranean area. Clim Res 31:85–95. https://doi.org/10.3354/cr031085

    Article  Google Scholar 

  29. Najac J, Boé J, Terray L (2009) A multi-model ensemble approach for assessment of climate change impact on surface winds in France. Clim Dyn 32:615–634. https://doi.org/10.1007/s00382-008-0440-4

    Article  Google Scholar 

  30. Obermann-Hellhund A, Conte D, Somot S, Torma CZ, Ahrens B (2018) Mistral and tramontane wind systems in climate simulations from 1950 to 2100. Clim Dyn 50:693–703. https://doi.org/10.1007/s00382-017-3635-8

    Article  Google Scholar 

  31. R Core Team (2017) R: a language and environment for statistical computing. R Found Stat Comput, Vienna

    Google Scholar 

  32. Ruffault J, Martin-StPaul NK, Rambal S, Mouillot F (2013) Differential regional responses in drought length, intensity and timing to recent climate changes in a Mediterranean forested ecosystem. Clim Chang 117:103–117. https://doi.org/10.1007/s10584-012-0559-5

    Article  Google Scholar 

  33. Ruffault J, Martin-StPaul NK, Duffet C, Goge F, Mouillot F (2014) Projecting future drought in Mediterranean forests: bias correction of climate models matters! Theor Appl Climatol 117:113–122. https://doi.org/10.1007/s00704-013-0992-z

    Article  Google Scholar 

  34. Ruffault J, Moron V, Trigo RM, Curt T (2017) Daily synoptic conditions associated with large fire occurrence in Mediterranean France: evidence for a wind-driven fire regime. Int J Climatol 37:524–533. https://doi.org/10.1002/joc.4680

    Article  Google Scholar 

  35. Ruffault J, Curt T, Martin-StPaul NK, Moron V, Trigo R (2018) Extreme wildfire events are linked to global-change-type droughts in the northern Mediterranean. Nat Hazards Earth Syst Sci 18:847–856. https://doi.org/10.5194/nhess-18-847-2018

    Article  Google Scholar 

  36. San-Miguel-Ayanz J, Moreno JM, Camia A (2013) Analysis of large fires in European Mediterranean landscapes: lessons learned and perspectives. For Ecol Manag 294:11–22. https://doi.org/10.1016/j.foreco.2012.10.050

    Article  Google Scholar 

  37. Turco M, von Hardenberg J, AghaKouchak A, Llasat MC, Provenzale A, Trigo RM (2017) On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. Sci Rep 7(1):81. https://doi.org/10.1038/s41598-017-00116-9

    Article  Google Scholar 

  38. Turco M, Rosa-Cánovas JJ, Bedia J, Jerez S, Montávez JP, Llasat MC, Provenzale A (2018) Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat Commun 9(1):3821. https://doi.org/10.1038/s41467-018-06358-z

    Article  Google Scholar 

  39. Van Wagner CE (1987) Development and structure of the Canadian Forest Fire Weather Index System. Canadian Forestry Service, Headquarters, Ottawa. Forestry Technical Report 35. 35 p

  40. Vidal J-P, Martin E, Franchistéguy L, Baillon M, Soubeyroux J-M (2010) A 50-year high-resolution atmospheric reanalysis over France with the Safran system. Int J Climatol 30:1627–1644. https://doi.org/10.1002/joc.2003

    Article  Google Scholar 

  41. Viegas DX, Bovio G, Ferreira A, Nosenzo A, Sol B (1999) Comparative study of various methods of fire danger evaluation in southern Europe. Int J Wildland Fire 9:235. https://doi.org/10.1071/WF00015

    Article  Google Scholar 

  42. Vrac M (2018) Multivariate bias adjustment of high-dimensional climate simulations: the rank resampling for distributions and dependences (R2D2) bias correction. Hydrol Earth Syst Sci Discuss:1–33. https://doi.org/10.5194/hess-2017-747

  43. Wada Y, Wisser D, Eisner S, Flörke M, Gerten D, Haddeland I, Hanasaki N, Masaki Y, Portmann FT, Stacke T, Tessler Z, Schewe J (2013) Multimodel projections and uncertainties of irrigation water demand under climate change. Geophys Res Lett 40:4626–4632. https://doi.org/10.1002/grl.50686

    Article  Google Scholar 

  44. Wang X, Wotton BM, Cantin AS, Parisien M-A, Anderson K, Moore B, Flannigan M (2017) cffdrs: an R package for the Canadian Forest fire danger rating system. Ecol Process 6(1):5. https://doi.org/10.1186/s13717-017-0070-z

    Article  Google Scholar 

  45. Williams AP, Abatzoglou JT (2016) Recent advances and remaining uncertainties in resolving past and future climate effects on global fire activity. Curr Climate Change Reports 2(1):1–14

    Article  Google Scholar 

  46. Yang W, Gardelin M, Olsson J, Bosshard T (2015) Multi-variable bias correction: application of forest fire risk in present and future climate in Sweden. Nat Hazards Earth Syst Sci 15:2037–2057. https://doi.org/10.5194/nhess-15-2037-2015

    Article  Google Scholar 

Download references

Acknowledgments

Acknowledgements are expressed to the French Ministry of Agriculture which funded the research activities. The authors are grateful to the modeling groups and the CORDEX projects for making the climate data available. They also thank Nathalie Bréda, Yvon Duché, Florent Mouillot, Mathieu Regimbeau, Samuel Somot, and Mathieu Vrac for their helpful inputs.

Author information

Affiliations

Authors

Contributions

JLD, HF, NM, and FP designed the study. HF conducted the analyses, produced figures, and wrote the first draft of the manuscript. NM and MDC helped on data processing. FP designed the uncertainty analysis. JR and RB contributed to discussing the results and participated in the writing of the text. All authors reviewed the paper.

Corresponding author

Correspondence to J-L. Dupuy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 10766 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fargeon, H., Pimont, F., Martin-StPaul, N. et al. Projections of fire danger under climate change over France: where do the greatest uncertainties lie?. Climatic Change 160, 479–493 (2020). https://doi.org/10.1007/s10584-019-02629-w

Download citation

Keywords

  • Fire Weather Index
  • Climate change
  • Projection
  • Emergence