Abstract
Tropical cyclones generated in the North Atlantic and the Eastern Pacific are a constant hazard for Mexico. Along with a possible increased hazard of tropical cyclones due to global warming, there is an inescapable increase in vulnerability and disaster risk towards tropical cyclones due to population growth and coastal infrastructure developments. In Mexico, the Yucatan Peninsula has the highest landfall rates of major category hurricanes in addition to the highest rate of population growth in major tourist cities. Therefore, the assessment of landfalling tropical cyclones is of paramount importance for emergency management and planning. This paper provides an assessment of the future climate for landfalling tropical cyclones in the Yucatan Peninsula, based on synthetic tropical cyclones driven by atmospheric models (reanalysis and six different general circulation models (GCMs)) and under the Representative Concentration Pathway 8.5 climate change scenario. The results using the ensemble mean from the GCMs show that the Yucatan Peninsula will be more susceptible to more frequent intense hurricanes and more regular events undergoing rapid intensification. We conclude that even under the uncertainty imposed by the results, it is more likely than not that the future climate will bring more extreme events to this area. Therefore, it becomes imperative to implement strategic planning based on the characterization of tropical cyclone hazards framed within the assessment of global warming effects.
This is a preview of subscription content, access via your institution.




References
Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR (2009) Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc Glob Soc 276:3019–3025. https://doi.org/10.1098/rspb.2009.0339
Appendini CM, Torres-Freyermuth A, Oropeza F, Salles P, López J, Mendoza ET (2013) Wave modeling performance in the Gulf of Mexico and Western Caribbean: wind reanalyses assessment. Appl Ocean Res 39. https://doi.org/10.1016/j.apor.2012.09.004
Appendini CM, Pedrozo-Acuña A, Valle-Levinson A (2014) Storm surge at a western Gulf of Mexico site: variations on Tropical Storm Arlene. Int J River Basin Manag 12. https://doi.org/10.1080/15715124.2014.880709
Beven, J. L., 2014: Hurricane Ingrid (AL102013). Miami, 16 pp. https://www.nhc.noaa.gov/data/tcr/AL102013_Ingrid.pdf (Accessed September 10, 2019)
Bhatia K, Vecchi G, Murakami H, Underwood S, Kossin J (2018) Projected response of tropical cyclone intensity and intensification in a global climate model. J Clim 31:8281–8303. https://doi.org/10.1175/JCLI-D-17-0898.1
Bhatia KT, Vecchi GA, Knutson TR, Murakami H, Kossin J, Dixon KW, Whitlock CE (2019) Recent increases in tropical cyclone intensificatio rates. Nat Commun 10:1–9. https://doi.org/10.1038/s41467-019-08471-z
Blaikie P, Cannon T, Davis I, and Wisner B (1994) At Risk: Natural Hazards, People’s Vulnerability, and Disasters. Routledge, New York
Camargo SJ (2013) Global and regional aspects of tropical cyclone activity in the CMIP5 models. J Clim 26:9880–9902. https://doi.org/10.1175/JCLI-D-12-00549.1
CIRIAN, 2007: The Rock Manual.
Dufresne JL et al (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn 40:2123–2165. https://doi.org/10.1007/s00382-012-1636-1
Elsner JB, Kossin JP, Jagger TH (2008) The increasing intensity of the strongest tropical cyclones. Nature 455:92–95. https://doi.org/10.1038/nature07234
Emanuel K (2000) A Statistical Analysis of Tropical Cyclone Intensity. Mon Weather Rev 128:1139–1152. https://doi.org/10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2
Emanuel K (2010) Tropical cyclone activity downscaled from NOAA-CIRES Reanalysis, 1908–1958. J. Adv. Model. Earth Syst.:2. https://doi.org/10.3894/JAMES.2010.2.1
Emanuel, K. A., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc Natl Acad Sci, 110, 12219–12224, doi:https://doi.org/10.1073/pnas.1301293110. http://www.pnas.org/cgi/doi/10.1073/pnas.1301293110 (Accessed September 6, 2014).
Emanuel K (2015) Effect of upper-ocean evolution on projected trends in tropical cyclone activity. J Clim 28:8165–8170. https://doi.org/10.1175/JCLI-D-15-0401.1
Emanuel K (2017) Will global warming make hurricane forecasting more difficult? Bull Am Meteorol Soc 98:495–501. https://doi.org/10.1175/BAMS-D-16-0134.1
Emanuel, K., and T. Jagger, 2010: On estimating hurricane return periods. J Appl Meteorol Climatol, 49, 837–844, doi:https://doi.org/10.1175/2009JAMC2236.1. http://journals.ametsoc.org/doi/abs/10.1175/2009JAMC2236.1 (Accessed April 9, 2013).
Emanuel K, DesAutels C, Holloway C, Korty R (2004) Environmental control of tropical cyclone intensity. J Atmos Sci 61:843–858
Emanuel, K., S. Ravela, E. Vivant, and C. Risi, 2006: A statistical deterministic approach to hurricane risk assessment. Bull Am Meteorol Soc, 87, 299–314, doi:https://doi.org/10.1175/BAMS-87-3-Emanuel. http://journals.ametsoc.org/doi/abs/10.1175/BAMS-87-3-299 (Accessed March 14, 2013).
Emanuel, K., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: results from downscaling IPCC AR4 simulations. Bull Am Meteorol Soc, 89, 347–367, doi:https://doi.org/10.1175/BAMS-89-3-347. http://journals.ametsoc.org/doi/abs/10.1175/BAMS-89-3-347 (Accessed May 21, 2013).
ENCC, 2013: Estrategia Nacional de Cambio Climático, Visión 10-20-40. Gobierno de la República, published on June 2013. https://www.gob.mx/cms/uploads/attachment/file/41978/Estrategia-Nacional-Cambio-Climatico-2013.pdf. Accessed on September 15, 2018.
Farfán LM, D’Sa EJ, Liu K, Rivera-Monroy VH (2014) Tropical cyclone impacts on coastal regions: the case of the Yucatán and the Baja California Peninsulas, Mexico. Estuar Coasts 37:1388–1402. http://link.springer.com/10.1007/s12237-014-9797-2. https://doi.org/10.1007/s12237-014-9797-2 (Accessed September 10, 2019)
Fuss S et al (2014) Betting on negative emissions. Nat Publ Gr 4:850–853. https://doi.org/10.1038/nclimate2392
Gent PR et al (2011) The community climate system model version 4. J Clim24:4973–4991. https://doi.org/10.1175/2011JCLI4083.1
Giorgetta MA et al (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. J Adv Model Earth Syst 5:572–597. http://doi.wiley.com/10.1002/jame.20038. https://doi.org/10.1002/jame.20038
Griffies SM et al (2011) The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations. J Clim24:3520–3544. https://doi.org/10.1175/2011JCLI3964.1
Hill KA, Lackmann GM (2011) The impact of future climate change on TC intensity and structure: a downscaling approach. J Clim24:4644–4661. https://doi.org/10.1175/2011JCLI3761.1
INEGI, Marco Geoestadístico Nacional. 2017
IPCC, 2014: Climate change 2014 synthesis report summary chapter for policymakers. Geneva, Switzerland, 151 pp pp.
Jones CD et al (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev4:543–570. https://doi.org/10.5194/gmd-4-543-2011
Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc77:437–471. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
Kang N-Y, Elsner JB (2015) Trade-off between intensity and frequency of global tropical cyclones. Nat Clim Chang5. http://www.nature.com/doifinder/10.1038/nclimate2646. https://doi.org/10.1038/nclimate2646
Kaplan J, DeMaria M (2003) Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic Basin. Weather Forecast18:1093–1108
Knutson, T. R., et al, 2010: Tropical cyclones and climate change. Nat Geosci, 3, 157–163, doi:https://doi.org/10.1038/ngeo779. http://www.nature.com/doifinder/10.1038/ngeo779 (Accessed March 1, 2013).
Knutson TR et al (2013) Dynamical downscaling projections of twenty-first-century atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J Clim26:6591–6617. https://doi.org/10.1175/JCLI-D-12-00539.1
Knutson TR, Sirutis JJ, Zhao M, Tuleya RE, Bender M, Vecchi GA, Villarini G, Chavas D (2015) Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J Clim28:7203–7224. https://doi.org/10.1175/JCLI-D-15-0129.1
Kozar ME, Mann ME, Emanuel KA, Evans JL (2013) Long-term variations of North Atlantic tropical cyclone activity downscaled from a coupled model simulation of the last millennium. J Geophys Res Atmos 118:13383–13392. https://doi.org/10.1002/2013JD020380
Landsea CW, Franklin JL (2013) Atlantic hurricane database uncertainty and presentation of a new database format. Mon Weather Rev141:3576–3592. https://doi.org/10.1175/MWR-D-12-00254.1
Lee C-Y, Tippett MK, Sobel AH, Camargo SJ (2016) Rapid intensification and the bimodal distribution of tropical cyclone intensity. Nat Commun7:10625. http://www.nature.com/doifinder/10.1038/ncomms10625. https://doi.org/10.1038/ncomms10625
Lee CY, Tippett MK, Sobel AH, Camargo SJ (2018) An environmentally forced tropical cyclone hazard model. J. Adv. Model. Earth Syst.:223–241. https://doi.org/10.1002/2017MS001186
LGAHOTDU, 2016: Ley General de Asentamientos Humanos, Ordenamiento Territorial y Desarrollo Urbano. Diario Oficial de la Federación, published on November 28, 2016. http://www.dof.gob.mx/nota_detalle.php?codigo = 5462755&fecha = 28/11/2016. Accessed on May 10, 2018.
LGCC 2012. Ley General de Cambio Climático. Diario Oficial de la Federación, published on June 6, 2012. http://www.diputados.gob.mx/LeyesBiblio/pdf/LGCC_130718.pdf. Accessed on September 15, 2018.
LGPC, 2014: Ley General de Protección Civil. Diario Oficial de la Federación, published on June 6, 2012. http://www.dof.gob.mx/nota_detalle.php?codigo = 5249857&fecha = 06/06/2012. Accessed on May 10, 2018.
Lin N, Emanuel K (2016) Grey swan tropical cyclones. Nat Clim Chang 6:106–112. https://doi.org/10.1038/nclimate2777%5Cn10.1038/nclimate2777%5Cnhttp://www.nature.com/nclimate/journal/vaop/ncurrent/abs/nclimate2777.html#supplementary-information. https://doi.org/10.1038/NCLIMATE2777
Marks, D. G., 1992: The beta and advection model for hurricane track forecasting. NOAA Technical Memo NWS NMC 70, Camp Springs, MD, National Meteorological Center.
Montgomery JM, Bryan KR, Mullarney JC, Horstman EM (2019) Attenuation of storm surges by coastal mangroves. Geophys Res Lett46:2680–2689. https://doi.org/10.1029/2018GL081636
Moss RH et al (2010) The next generation of scenarios for climate change research and assessment. Nature463:747–756. https://doi.org/10.1038/nature08823
Oliver-Smith A (1999) “What Is a Disaster? Anthropological Perspectives on a Persistent Question.” In: Anthony Oliver-Smith and Susanna Hoffman (ed) The Angry Earth: Disaster in Anthropological Perspective. Routledge, New York, p 18–34
Osorio-Cano, J. D., et al, 2019: Effects of roughness loss on reef hydrodynamics and coastal protection: Approaches in Latin America.
PACMUN, 2013: Plan de Acción Climática Municipal de Bacalar, Quintana Roo. Dirección de Ecología y Medio Ambiente del Municipio de Bacalar. http://transparenciabacalar.com/wp-content/uploads/2018/07/PACMUN-BACALAR.pdf. Accessed on September 15, 2018.
PACMUN 2016. Plan de Acción Climática Municipal de Benito Juárez, Quintana Roo. Instituto de Planeación de Desarrollo Urbano Municipio de Benito Juárez. https://cancun.gob.mx/archivos_pdf/Pacmun/PACMUN_BJ_ACTUALIZACION2015.pdf. Accessed on September 15, 2018.
Pasch, R. J., and D. A. Zelinsky, 2014: Hurricane Manuel (EP132013). Maimi, 23 pp. https://www.nhc.noaa.gov/data/tcr/EP132013_Manuel.pdf.
PEACCQR 2013. Programa Estatal de Acción ante el Cambio Climático (Estado de Quintana Roo). Gobierno de Quintana Roo, Instituto Nacional de Ecología y Cambio Climático (INECC), Agencia Española de Cooperación Internacional para el Desarrollo (AECID), Universidad de Quintana Roo. https://www.gob.mx/cms/uploads/attachment/file/40802/2013_qroo_peacc.pdf. Accessed on September 15, 2018.
Peduzzi P, Chatenoux B, Dao H, De Bono A, Herold C, Kossin J, Mouton F, Nordbeck O (2012) Global trends in tropical cyclone risk. Nat Clim Chang2:289–294. https://doi.org/10.1038/nclimate1410
Reguero BG et al (2019) The risk reduction benefits of the mesoamerican reef in Mexico. Front Earth Sci7:1–21. https://doi.org/10.3389/feart.2019.00125
Rosengaus-Moshinsky, M., M. Jiménez-Espinosa, and M. T. Vázquez-Conde, 2002: Atlas climatológico de ciclones tropicales en México. Centro Nacional para la Prevención de Desastres. Instituto Mexicano de Tecnología del Agua., Mexico.
Secaira, F. and C. Acevedo. 2017. Importancia de los arrecifes y dunas en la protección de la costa. Serie técnica. El papel de los sistemas naturales en la dinámica costera en el caribe mexicano y el impacto de las actividades humanas en su condición actual. The Nature Conservancy, Mexico
SEDATU, 2015: Atlas de riesgos naturales del municipio de Tulum Quintana Roo. Secretaría de Desarrollo Agrario, Territorial y Urbano, published on January, 2015. http://rmgir.proyectomesoamerica.org/PDFMunicipales/23009_TULUM.pdf. Accessed on September 15, 2018.
SEDATU, 2016: Atlas de peligros y/o riesgos del municipio de Solidaridad, Quintana Roo. Secretaría de Desarrollo Agrario, Territorial y Urbano, published on December, 2016. http://rmgir.proyectomesoamerica.org/PDFMunicipales/2016/AR_SOLIDARIDAD_QROO_2016.pdf. Accessed on September 15, 2018.
Silva-Casarin, R., G. Ruiz-Martinez, I. Mariño-Tapia, G. Posada-Vanegas, E. Mendoza-Baldwin, and E. Escalante-Mancera, 2012: Manmade vulnerability of the Cancun Beach System: the case of Hurricane Wilma. CLEAN - Soil, Air, Water, 40, 911–919, doi:https://doi.org/10.1002/clen.201100677. http://doi.wiley.com/10.1002/clen.201100677 (Accessed April 9, 2013).
U.S. Global Change Research Program (USGCRP) (2017) Extreme storms. In: Wuebbles DJ, Fahey DW, Hibbard KA, Dokken DJ, Stewart BC, Maycock TK (eds) Climate science special report: fourth national climate assessment, vol I, Washington
UNFCCC (United Nations Framework Convention on Climate Change), 2015: Intended National Determined Contribution Mexico. http://www4.unfccc.int/submissions/INDC/Published%20Documents/Mexico/1/MEXICO%20INDC%2003.30.2015.pdf. Accessed May 2018.
UNISDR (United Nations International Strategy for Disaster Reduction), 2015: Sendai framework for disaster risk reduction 2015–2030. https://www.unisdr.org/files/43291_sendaiframeworkfordrren.pdf. Accessed May 2018.
Walsh KJE et al (2016) Tropical cyclones and climate change. Wiley Interdiscip Rev Clim Chang7:65–89. https://doi.org/10.1002/wcc.371
Watanabe M et al (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim23:6312–6335. https://doi.org/10.1175/2010JCLI3679.1
Acknowledgments
We want to thank Professor Kerry Emanuel for supplying the synthetic events used in this study and his advice on the analysis, as well as Gonzalo Uriel Martín-Ruiz and José López-Gonzalez for the IT support, and Irina Ize-Lema and Rodrigo Garza-Pérez for encouraging this study and their valuable comments to the first draft.
Funding
UNAM-DGAPA PAPIIT Project IA100418 and the Centro Mexicano de Innovación en Energía del Océano, CEMIE-Océano (OLE-1) provided funding for this study.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(DOCX 838 kb)
Rights and permissions
About this article
Cite this article
Appendini, C.M., Meza-Padilla, R., Abud-Russell, S. et al. Effect of climate change over landfalling hurricanes at the Yucatan Peninsula. Climatic Change 157, 469–482 (2019). https://doi.org/10.1007/s10584-019-02569-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10584-019-02569-5
Keywords
- Tropical cyclones
- Climate change
- Caribbean
- Natural hazards
- Public policy
- Risk management