Skip to main content

The contribution of technological diffusion to climate change mitigation: a network-based approach


We propose a novel approach to quantify the contribution of technological diffusion to climate change mitigation. First, we use a parametric model of epidemic diffusion to estimate from micro-level data the determinants and the structure of the networks of diffusion for three key mitigation technologies: electro-mobility, renewable energy and agriculture. We then simulate the propagation of new technological vintages on these networks and quantify the reduction of emissions induced by the diffusion process using a tailored feedback centrality measure labelled “emission centrality”. Finally, we investigate how new forms of international collaboration such as climate clubs can contribute to mitigation by catalysing the adoption of new technologies. Our approach can be used directly to measure the contribution of technological diffusion to mitigation or indirectly by providing estimates of global technological diffusion to integrated assessment models.

This is a preview of subscription content, access via your institution.


  • Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47

    Article  Google Scholar 

  • Archibugi D, Coco A (2004) A new indicator of technological capabilities for developed and developing countries (Arco). World Dev 32(4):629–654

    Article  Google Scholar 

  • Balint T, Lamperti F, Mandel A, Napoletano M, Roventini A, Sapio A (2017) Complexity and the economics of climate change: a survey and a look forward. Ecol Econ

  • Battiston S, Puliga M, Kaushik R, Tasca P, Caldarelli G (2012) Debtrank: too central to fail? Financial networks, the fed and systemic risk. Sci Rep 2:541

    Article  Google Scholar 

  • Bloch F, Jackson MO, Tebaldi P (2017) Centrality measures in networks. Available at SSRN 2749124

  • De Cian E, Bosetti V, Tavoni M (2012) Technology innovation and diffusion in less than ideal climate policies: an assessment with the witch model. Clim Chang 114(1):121–143

    Article  Google Scholar 

  • de Coninck H, Sagar A (2015) Making sense of policy for climate technology development and transfer. Clim Pol 15:1–11

    Article  Google Scholar 

  • EVvolumes (2017) The electric vehicle world sales database.

  • FAO (2018) Dataset of agricultural inputs. Accessed 01 Feb 2019

  • Glachant M, Dechezleprêtre A (2017) What role for climate negotiations on technology transfer? Clim Pol 17(8):962–981. 19

    Article  Google Scholar 

  • Gomez Rodriguez M, Leskovec J, Krause A (2010) Inferring networks of diffusion and influence. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 1019–1028

    Chapter  Google Scholar 

  • Grubb M, De Coninck H, Sagar AD (2015) From Lima to Paris, part 2: injecting ambition. Clim Pol 15(4):413–416

    Article  Google Scholar 

  • Halleck-Vega SH, Mandel A (2018) Technology diffusion and climate policy: a network approach and its application to wind energy. Ecol Econ 145:461–471

    Article  Google Scholar 

  • Halleck-Vega S, Mandel A, Millock K (2018) Accelerating diffusion of climate-friendly technologies: a network perspective. Ecol Econ 152:235–245

    Article  Google Scholar 

  • Hovi J, Sprinz DF, Sælen H, Underdal A (2016) Climate change mitigation: a role for climate clubs? Palgrave Communications 2:16020

    Article  Google Scholar 

  • Jackson MO (2010) Social and economic networks. Princeton university press, Princeton

    Book  Google Scholar 

  • Keohane RO, Victor DG (2016) Cooperation and discord in global climate policy. Nat Clim Chang 6(6):570–575

    Article  Google Scholar 

  • Lamperti F, Dosi G, Napoletano M, Roventini A, Sapio A (2018) Faraway, so close: coupled climate and economic dynamics in an agent-based integrated assessment model. Ecol Econ 150:315–339

    Article  Google Scholar 

  • Nordhaus W (2015) Climate clubs: overcoming free-riding in international climate policy. Am Econ Rev 105(4):1339–1370

    Article  Google Scholar 

  • NSF-Kellogg-Institute (2018) Economic Integration Agreements Database 4. Accessed 01 Feb 2019

  • Paroussos L, Mandel A, Fragkiadakis K, Fragkos P, Hinkel J, Vrontisi Z (2019) Climate clubs and the macro-economic benefits of international cooperation on climate policy. Nature Climate Change 9, 542:546

  • Tavoni M, De Cian E, Luderer G, Steckel JC, Waisman H (2012) The value of technology and of its evolution towards a low carbon economy. Climatic Change, 114(1), 39–57

  • WindPower (2016). Wind Power database, retrieved Accessed 01 Feb 2019

  • WRI (2018). CAIT Climate Data Explorer, retrieved from Accessed 01 Feb 2019

  • Wu X, Kumar A, Sheldon D, Zilberstein S (2013) Parameter Learning for Latent Network Diffusion. Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI), 2923–2930

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Antoine Mandel.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a Special Issue on Win-Win Solutions to Climatic Change edited by Diana Mangalagiu, Alexander Bisaro, Jochen Hinkel, and Joan David Tãbara

Electronic supplementary material


(PDF 488 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mandel, A., Halleck Vega, S. & Wang, DX. The contribution of technological diffusion to climate change mitigation: a network-based approach. Climatic Change 160, 609–620 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

JEL classification

  • O33
  • Q54
  • Q55
  • C61
  • C63