Advertisement

A hierarchical collection of political/economic regions for analysis of climate extremes

  • Dáithí A. StoneEmail author
Article

Abstract

This paper describes five sets of regions intended for use in summarizing extreme weather over Earth’s land areas from a climate perspective. The sets differ in terms of their target size: ∼10 Mm2, ∼5 Mm2, ∼2 Mm2, ∼0.5 Mm2, and ∼0.1 Mm2 (where 1 Mm2= 1 million km2). The regions are based on political/economic divisions, and hence are intended to be primarily aligned with geographical domains of decision-making and disaster response rather than other factors such as climatological homogeneity. This paper describes the method for defining these sets of regions; provides the final definitions of the regions; and performs some comparisons across the five sets and other available regional definitions with global land coverage, according to climatological and non-climatological properties.

Notes

Acknowledgements

The author is grateful for the administrative shapefiles provided by Natural Earth (http://www.naturalearthdata.com) and GADM (http://gadm.org), which were used for forming the regions developed in this paper, and for the climate data from the European Centre for Medium-Range Weather Forecasts and from the National Center for Atmospheric Research. Mark Risser provided helpful comments that guided the development of the region definitions.

Supplementary material

10584_2019_2479_MOESM1_ESM.pdf (126 kb)
(PDF 126 KB)
10584_2019_2479_MOESM2_ESM.pdf (169 kb)
(PDF 169 KB)
10584_2019_2479_MOESM3_ESM.pdf (260 kb)
(PDF 259 KB)

References

  1. Angélil O, Stone DA, Pall P (2014a) Attributing the probability of South African weather extremes to anthropogenic greenhouse gas emissions: spatial characteristics. Geophy Res Lett 41:3238–3243.  https://doi.org/10.1002/2014GL059760
  2. Angélil O, Stone DA, Tadross M, Tummon F, Wehner M, Knutti R (2014b) Attribution of extreme weather to anthropogenic greenhouse gas emissions: sensitivity to spatial and temporal scales. Geophys Res Lett 41:2150–2155.  https://doi.org/10.1002/2014GL059234
  3. Angélil O, Perkins-Kirkpatrick S, Alexander LV, Stone D, Donat MG, Wehner M, Shiogama H, Ciavarella A, Christidis N (2016) Comparing regional precipitation and temperature extremes in climate model and reanalysis products. Weather Clim Extremes 13:35–43.  https://doi.org/10.1016/j.wace.2016.07.001 CrossRefGoogle Scholar
  4. Angélil O, Stone D, Wehner M, Paciorek CJ, Krishnan H, Collins W (2017) An independent assessment of anthropogenic attribution statements for recent extreme temperature and rainfall events. J Climate 30:5–16.  https://doi.org/10.1175/JCLI-D-16-0077.1 CrossRefGoogle Scholar
  5. Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science 332:220–224CrossRefGoogle Scholar
  6. Bindoff NL, Stott PA, AchutaRao KM, Allen MR, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S, Mokhov II, Overland J, Perlwitz J, Sebbari R, Zhang X, alii et (2013) Detection and attribution of climate change: from global to regional. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 867–952Google Scholar
  7. Christensen JH, Krishna Kumar K, Aldrian E, An S, Cavalcanti IFA, de Castro M, Dong W, Goswami P, Hall A, Kanyanga JK, Kitoh A, Kossin J, Lau NC, Renwick J, Stephenson DB, Xie SP, Zhou T, alii et al (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 1217–1308Google Scholar
  8. Christidis N, Stott PA, Scaife AA, Arribas A, Jones GS, Copsey D, Knight JR, Tennant WJ (2013) A new HadGEM3-A-based system for attribution of weather- and climate-related extreme events. J Climate 26:2756–2783CrossRefGoogle Scholar
  9. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm E V, Isaksen L, Kållberg PK, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597Google Scholar
  10. Dole R, Hoerling M, Perlwitz J, Eischeid J, Pegion P, Zhang T, Quan XW, Xu T, Murray D (2011) Was there a basis for anticipating the 2010 Russian heat wave? Geophys Res Lett 38:L06702.  https://doi.org/10.1029/2010GL046582 CrossRefGoogle Scholar
  11. Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9:1937–1958.  https://doi.org/10.5194/gmd-9-1937-2016 CrossRefGoogle Scholar
  12. Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M, alii et (2013) Evaluation of climate models. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 741–866Google Scholar
  13. Giorgi F (2002) Variability and trends of sub-continental scale surface climate in the twentieth century. Part I: observations. Clim Dyn 18:675–691CrossRefGoogle Scholar
  14. Giorgi F, Francisco R (2000) Uncertainties in regional climate change prediction: a regional analysis of ensemble simulations with the HADCM2 coupled AOGCM. Clim Dyn 16:169–182CrossRefGoogle Scholar
  15. Gutowski WJJ, Giorgi F, Timbal B, Frigon A, Daniela Jacob D, Kang HS, Raghavan K, Lee B, Lennard C, Grigory Nikulin G, O’Rourke E, Rixen M, Solman S, Stephenson T, Tangang F (2016) Wcrp coordinated regional downscaling experiment (cordex): A diagnostic mip for cmip6. Geosci Model Dev 9:4087–4095.  https://doi.org/10.5194/gmd-9-4087-2016 CrossRefGoogle Scholar
  16. Haarsma RJ, Roberts MJ, Vidale PL, Senior CA, Bellucci A, Bao Q, Chang P, Corti S, Fučkar N S, Guemas V, von Hardenberg J, Hazeleger W, Kodama C, Torben Koenigk T, Leung LR, Lu J, Luo JJ, Mao J, Mizielinski MS, Mizuta R, Nobre P, Satoh M, Scoccimarro E, Semmler T, Small J, von Storch JS (2016) High resolution model intercomparison project (HighResMIP v1.0) for CMIP6. Geosci Model Dev 9:4185–4208.  https://doi.org/10.5194/gmd-9-4185-2016 CrossRefGoogle Scholar
  17. Hewitson B, Janetos AC, Carter TR, Giorgi F, Jones RG, Kwon WT, Mearns LO, Schipper ELF, MKea van Aalst (2014) Regional context. In: Barros VR, Field CB et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 1133–1197Google Scholar
  18. Hijioka Y, Lin E, Pereira JJ, Corlett RT, Cui X, Insarov G, Lasco R, Lindgren E, Surjan A, alii et (2014) Asia. In: Barros VR, Field CB et al (eds) Climate Change 2014: impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 1327–1370Google Scholar
  19. Hoegh-Guldberg O, Cai R, Es Poloczanska, Brewer PG, Sundby S, Hilmi K, Fabry VJ, Jung S et al (2014) The Ocean. In: Barros VR, Field CB et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 1655–1731Google Scholar
  20. Hoerling M, Kumar A, Dole R, Nielsen-Gammon JW, Eischeid J, Perlwitz J, Quan XW, Zhang T, Pegion P, Chen M (2013) Anatomy of an extreme event. J Clim 26:2811–2832.  https://doi.org/10.1175/JCLI-D-12-00270.1 CrossRefGoogle Scholar
  21. Jones GS, Stott PA, Christidis N (2008) Human contribution to rapidly increasing frequency of very warm Northern Hemisphere summers. J Geophys Res 113:D02109.  https://doi.org/10.1029/2007JD008914 CrossRefGoogle Scholar
  22. Kay JE, Deser C, Phillips A, Mai A, Hannay C, Strand G, Arblaster J, Bates S, Danabasoglu G, Edwards J, Holland M, Kushner P, Lamarque JF, Lawrence D, Lindsay K, Middleton A, Munoz E, Neale R, Oleson K, Polvani L, Vertenstein M (2015) The community earth system model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Amer Meteorol Soc 96:1333–1349.  https://doi.org/10.1175/BAMS-D-13-00255.1 CrossRefGoogle Scholar
  23. Kovats RS, Valentini R, Bouwer LM, Georgopoulou E, Jacob D, Martin E, Rounsevell M, Soussana JF et al (2014) Europe. In: Barros VR, Field CB et al (eds) Climate change 2014: Impacts, adaptation, and vulnerability. Part B: Regional Aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 1267–1326Google Scholar
  24. Lawal K, Wolski P, Lennard C, Tadross M, Abiodun B, Angélil O, Cerezo Mota R, Stone D (2015) Predictability and attribution of the South African seasonal climate. Water Research Commission, South Africa, iSBN#978-1-4312-0633-9Google Scholar
  25. Lott FC, Stott PA (2016) Evaluating simulated fraction of attributable risk using climate observations. J Climate 29:4565–4575.  https://doi.org/10.1175/JCLI-D-15-0566.1 CrossRefGoogle Scholar
  26. Magrin GO, Marengo JA, Boulanger JP, Buckeridge MS, Castellanos E, Poveda G, Scarano FR, Vicuña S et al (2014) Central and South America. In: Barros VR, Field CB et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 1499–1566Google Scholar
  27. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Amer Meteor Soc 88:1383–1394CrossRefGoogle Scholar
  28. Mitchell D, AchutaRao K, Allen M, Bethke I, Beyerle U, Ciavarella A, Forster PM, Fuglestvedt J, Gillett N, Haustein K, Ingram W, Iversen T, Kharin S, Klingaman N, Massey N, Fischer E, Schleussner CF, Scinocca J, Seland O, Shiogama H, Shuckburgh E, Sparrow S, Stone D, Uhe P, Wallom D, Wehner M, Zaaboul R (2017) Half a degree additional warming, prognosis and projected impacts (HAPPI): background and experimental design. Geosci Model Dev 10:571–583.  https://doi.org/10.5194/gmd-10-571-2017 CrossRefGoogle Scholar
  29. Murakami D, Yamagata Y (2016) Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling. arXiv:https://arxiv.org/abs/1610.09041
  30. Niang I, Ruppel OC, Abdrabo MA, Essel A, Lennard C, Padgham J, Urquhart P et al (2014) Africa. In: Barros VR, Field CB et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 1199–1265Google Scholar
  31. Nurse LA, McLean RF, Agard J, Briguglio LP, Duvat-Magnan V, Pelesikoti N, Tompkins E, Webb A et al (2014) Small Islands. In: Barros VR, Field CB et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 1613–1654Google Scholar
  32. Rahmstorf S, Coumou D (2011) Increase of extreme events in a warming world. Proc Natl Acad Sci 108:17,905–17,909CrossRefGoogle Scholar
  33. Reisinger A, Kitching RL, Chiew F, Hughes L, Newton PCD, Schuster SS, Tait A, Whetton P et al (2014) Australasia. In: Barros VR, Field CB et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 1371–1438Google Scholar
  34. Risser MD, Paciorek CJ, Stone DA (2017a) Spatially-dependent multiple testing under model misspecification, with application to detection of anthropogenic influence on extreme climate events. Journal of the American Statistical Association pp submitted, arXiv:1703.10,002
  35. Risser MD, Stone DA, Paciorek CJ, Wehner MF, Angélil O (2017b) Quantifying the effect of interannual ocean variability on the attribution of extreme climate events to human influence. Clim Dyn.  https://doi.org/10.1007/s00382-016-3492-x
  36. Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M, Reichstein M, Sorteberg A, Vera C, Zhang X et al (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, Cambridge, pp 109–230Google Scholar
  37. Stone DA, Risser MD, Angélil O M, Wehner MF, Cholia S, Keen N, Krishnan H, O’Brien TA, Collins WD (2018) A basis set for exploration of sensitivity to prescribed ocean conditions for estimating human contributions to extreme weather in CAM5.1-1degree. Weather Clim Extremes 19:10–19.  https://doi.org/10.1016/j.wace.2017.12.003 CrossRefGoogle Scholar
  38. Stone DA, Christidis N, Folland C, Perkins-Kirkpatrick S, Perlwitz J, Shiogama H, Wehner MF, Wolski P, Cholia S, Krishnan H, Murray D, Angélil O, Beyerle U, Ciavarella A, Dittus A, Quan XW (2019) Experiment design of the international clivar c20c+ detection and attribution project. Weather and Climate Extremes p SubmittedGoogle Scholar
  39. van Oldenborgh GJ, Collins M, Arblaster J, Hesselbjerg J, Marotske J, Power SB, Rummukainen M, Zhou T et al (2013) Atlas of global and regional climate projections. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 1311–1393Google Scholar
  40. von Storch JS (2004) On statistical dissipation in GCM-climate. Clim Dyn 23:1–15CrossRefGoogle Scholar
  41. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Amer Met Soc 93:485–498CrossRefGoogle Scholar
  42. Wolski P, Stone D, Tadross M, Wehner M, Hewitson B (2014) Attribution of floods in the Okavango Basin, Southern Africa. J Hydrol 511:350–358CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Global Climate Adaptation PartnershipOxfordUK
  2. 2.Lawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.National Institute of Water and Atmospheric ResearchWellingtonNew Zealand

Personalised recommendations