Potential male leatherback hatchlings exhibit higher fitness which might balance sea turtle sex ratios in the face of climate change

Abstract

Sea turtles are vertebrates with temperature-dependent sex determination. Rising temperatures due to climate change cause female-biased sex ratios. We have assessed the influence of nest depth and shading conditions on nest temperatures and hatchling fitness of the leatherback sea turtle (Dermochelys coriacea). We relocated 48 leatherback clutches into a hatchery in 2013, 2014 and 2015, respectively. Of these, 24 clutches were placed under shade conditions and 24 were placed under unshaded (sun) conditions at three depths (50, 75, 90 cm). Fitness (as measured by greater carapace length, carapace width and hatchling weight) and locomotion performance (faster crawling and shorter righting responses) were better in leatherback hatchlings from the cooler, shaded nests than in those from the warmer, unshaded nests. In 2013, in clutches at a depth of 50 cm, hatching success was higher for the shaded clutches (79.68% ± 15.32%) than for the unshaded clutches (38.39% ± 34.35), while in clutches at deeper depths unshaded clutches had higher hatching success (35.58% ± 24.01%) than shaded clutches (60.62% ± 12.21%). Our results show that shaded conditions produced hatchlings with a higher fitness and a higher likelihood of being male. Therefore, our results can be used to provide conservation policies with a tool to decrease the current female-skewed sex ratio production caused by rising temperatures at most nesting rookeries around the world.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bell BA, Spotila JR, Paladino FV, Reina RD (2004) Low reproductive success of leatherbackturtles, Dermochelys coriacea, is due to high embryonic mortality. Biol Conserv 115:131–138. https://doi.org/10.1016/S0006-3207(03)00102-2

    Article  Google Scholar 

  2. Booth DT, Evans A (2011) Warm water and cool nests are best. How global warming might influence hatchling green turtle swimming performance. PLoS One 6(8):e23162. https://doi.org/10.1371/journal.pone.0023162

    Article  Google Scholar 

  3. Booth DT, Feeney R, Shibata Y (2013) Nest and maternal origin can influence morphology and locomotor performance of hatchling green turtles (Chelonia mydas) incubated in field nests. Mar Biol 160:127–137. https://doi.org/10.1007/s00227-012-2070-y

    Article  Google Scholar 

  4. Burgess EA, Booth DT, Lanyon JM (2006) Swimming performance of hatchling green turtles is affected by incubation temperature. Coral Reefs 25:341–349. https://doi.org/10.1007/s00338-006-0116-7

    Article  Google Scholar 

  5. Chevalier J, Godfrey MH, Girondot M (1999) Significant difference of temperature-dependent sex determination between French Guiana (Atlantic) and playa Grande (Costa-Rica, Pacific) leatherbacks (Dermochelys coriacea). Ann Sci Nat Zool Biol Anim 20:147–152. https://doi.org/10.1016/S0003-4339(00)88882-6

    Article  Google Scholar 

  6. Chu CT, Booth DT, Limpus CJ (2008) Estimating the sex ratio of loggerhead turtle hatchling at Mon Repos rookery (Australia) from nest temperatures. Aust J Zool 56(1):57–64. https://doi.org/10.1071/ZO08004

    Article  Google Scholar 

  7. Crim JL, Spotila LD, Spotila JR, O’Connor M, Reina R, Williams CJ, Paladino FV (2002) The leatherback turtle, Dermochelys coriacea exhibits both polyandry and polygyny. Mol Ecol 11:2097–2106. https://doi.org/10.1046/j.1365-294X.2002.01591.x

    Article  Google Scholar 

  8. Delmas V, Baudry E, Girondot M, Prevot-Julliard AC (2007) The righting response as a fitness index in freshwater turtles. Biol J Linn Soc 91:99–109. https://doi.org/10.1111/j.1095-8312.2007.00780.x

    Article  Google Scholar 

  9. Dutton DL, Dutton PH, Chaloupka M, Boulon RH (2005) Increase of a Caribbean leatherback turtle Dermochelys coriacea nesting population linked to long-term nest protection. Biol Conserv 126:186–194. https://doi.org/10.1016/j.biocon.2005.05.013

    Article  Google Scholar 

  10. Fernandez-Chacón A, Bertolero A, Amengual A, Tavecchia G, Homar V, Oro D (2011) Spatial heterogeneity in the effects of climate change on the population dynamics of a Mediterranean tortoise. Glob Chang Biol 17:3075–3088. https://doi.org/10.1111/j.1365-2486.2011.02469.x

    Article  Google Scholar 

  11. Fisher LR, Godfrey MH, Owens DW (2014) Incubation temperature effects on hatchling performance in the loggerhead sea turtle (Caretta caretta). PLoS One 9:e114880 https://doi.org/10.1371/journal.pone.0114880

    Article  Google Scholar 

  12. Fuentes MMPB, Maynard JA, Guinea M, Bell IP, Werdell PJ, Hamann M (2009) Proxy indicators of sand temperature help project impacts of global warming on sea turtles in northern Australia. Endanger Species Res 9:33–40. https://doi.org/10.3354/esr00224

    Article  Google Scholar 

  13. Garrett K, Wallace BP, Garner J, Paladino FV (2010) Variations in leatherback turtle nest environments: consequences for hatching success. Endanger Species Res 11:147–155. https://doi.org/10.3354/esr00273

    Article  Google Scholar 

  14. Girondot M, Godfrey MH, Ponge L, Rivalan P (2007) Modeling approaches to quantify leatherback nesting trends in French Guiana and Suriname. Chelonian Conserv Biol 6:37–46. https://doi.org/10.2744/1071-8443

    Article  Google Scholar 

  15. Girondot M, Monsinjon J, Guillon J-M (2018) Delimitation of the embryonic thermosensitive period for sex determination using an embryo growth model reveals a potential bias for sex ratio prediction in turtles. J Therm Biol 73:32–42. https://doi.org/10.1016/j.jtherbio.2018.02.006

    Article  Google Scholar 

  16. Glen F, Broderick AC, Godley BJ, Hays GC (2003) Incubation environment affects the phenotype of naturally incubated green turtle hatchlings. J Mar Biol Assoc UK 83(5):1183–1186

  17. Godfrey MH, Barreto R, Mrosovsky N (1996) Estimating past and present sex ratios of sea turtles in Suriname. Can J Zool 74:267–277. https://doi.org/10.1139/z96-033

    Article  Google Scholar 

  18. Grayson KL, Mitchell NJ, Monks JM, Keall SN, Wilson JN et al (2014) Sex ratio Bias and extinction risk in an isolated population of tuatara (Sphenodon punctatus). PLoS One 9:e94214. https://doi.org/10.1371/journal.pone.0094214

    Article  Google Scholar 

  19. Hawkes LA, Broderick AC, Godfrey MH, Godley BJ (2007) Investigating the potential impacts of climate change on marine turtle population. Glob Chang Biol 13:923–932. https://doi.org/10.1111/j.1365-2486.2007.01320.x

    Article  Google Scholar 

  20. Hawkes LA, Broderick AC, Godfrey MH, Godley BJ (2009) Climate change and marine turtles. Endanger Species Res 7:137–154. https://doi.org/10.3354/esr00198

    Article  Google Scholar 

  21. Hays GC, Fossette S, Katselidis KA, Schofield G, Gravenor MB (2010) Breeding periodicity for male seaturtles, operational sex ratios, and implications in the face of climate change. Conserv Biol 24:1636–1643. . 10.1111/j.1523-1739.2010.01531.x

    Article  Google Scholar 

  22. Hays GC, Mazaris AD, Schofield G (2014) Different male vs. female breeding periodicity helps mitigate offspring sex ratio skews in sea turtles. Front Mar Sci 1:1–9. https://doi.org/10.3389/fmars.2014.00043

    Article  Google Scholar 

  23. Hays GC, Mazaris AD, Schofield G, Laloë JO (2017) Population viability at extreme sex-ratio skews produced by temperature-dependent sex determination. Proc Biol Sci 284(1848). https://doi.org/10.1098/rspb.2016.2576

    Article  Google Scholar 

  24. Hewavisenthi S, Parmenter CJ (2001) Influence of incubation environment on the development of the Flatback turtle (Natator depressus). Copeia 2001:668–682. https://doi.org/10.1643/0045-8511

  25. Hill JE, Paladino FV, Spotila JR, Tomillo PS (2015) Shading and watering as a tool to mitigate the impacts of climate change in sea turtle nests. PLoS One 10:e0129528

    Article  Google Scholar 

  26. Houghton JDR, Myers AE, Lloyd C, King RS, Isaacs C, Hays GC (2007) Protracted rainfall decreases temperature within leatherback turtle (Dermochelys coriacea) clutches in Grenada, West Indies: ecological implications for a species displaying temperature dependent sex determination. J Exp Mar Biol Ecol 345:71–77. https://doi.org/10.1016/j.jembe.2007.02.001

    Article  Google Scholar 

  27. Howard R, Bell I, Pike DA (2014) Thermal tolerances of sea turtle embryos: current understanding and future directions. Endanger Species Res 26:75–86. https://doi.org/10.1371/journal.pone.0129528

    Article  Google Scholar 

  28. Hulin V, Delmas V, Girondot M, Godfrey M, Guillon JM (2009) Temperature-dependent sex determination and global change: are some species at greater risk? Oecologia 160:493–506. https://doi.org/10.1007/s00442-009-1313-1

    Article  Google Scholar 

  29. International Panel on Climate Change (IPCC) (2013) Climate Change 2013. The physical science basis (Stocker TF, Qin D, Plattner GK et al., eds). Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge

  30. Ischer T, Ireland K, Booth DT (2009) Locomotion performance of green turtle hatchlings from the Heron Island rookery. Great Barrier Reef Mar Biol 156:1399–1409. https://doi.org/10.1007/s00227-009-1180-7

    Article  Google Scholar 

  31. Janzen FJ (1994) Climate change and temperature-dependent sex determination in reptiles. Proc Natl Acad Sci USA 91:7487–7490. https://doi.org/10.1073/pnas.91.16.7487

    Article  Google Scholar 

  32. Janzen FJ, Tucker JK, Paukstis GL (2000) Experimental analysis of an early life-history stage : selection on body size of hatchling turtles? Funct Ecol 81:2290–2304. https://doi.org/10.1111/j.1365-2435.2006.01220.x

    Article  Google Scholar 

  33. Jourdan J, Fuentes MMPB (2015) Effectiveness of strategies at reducing sand temperature to mitigate potential impacts from changes in environmental temperature on sea turtle reproductive output. Mitig Adapt Strateg Glob Chang 20:121–133. https://doi.org/10.1007/s11027-013-9482-y

    Article  Google Scholar 

  34. Kraemer JE, Bell R (1980) Rain-induced mortality of eggs and hatchlings of Loggerhead Sea turtles (Caretta caretta) on the Georgia coast. Herpetologica 36:72–77 http://www.jstor.org/stable/3891858

  35. Laloë J-O, Cozens J, Renom B, Taxonera A, Hays GC (2014) Effects of rising temperature on the viability of an important sea turtle rookery. Nat Clim Chang 4:513–518. https://doi.org/10.1038/nclimate2236

    Article  Google Scholar 

  36. Laloë J-O, Esteban N, Berkel J, Hays GC (2016) Sand temperatures for nesting sea turtles in the Caribbean: implications for hatchling sex ratios in the face of climate change. J Exp Mar Biol Ecol 474:92–99. https://doi.org/10.1016/j.jembe.2015.09.015

    Article  Google Scholar 

  37. Laloë J-O, Cozens J, Renom B, Taxonera A, Hays GC (2017) Climate change and temperature-linked hatchling mortality at a globally important sea turtle nesting site. Glob Chang Biol 23:1–10. https://doi.org/10.1111/gcb.13765

    Article  Google Scholar 

  38. Matsuzawa Y, Sato K, Sakamoto W, Bjorndal KA (2002) Seasonal fluctuations in sand temperature: effects on the incubation period and mortality of loggerhead sea turtle (Caretta caretta) pre-emergent hat- chlings in Minabe. Mar Biol 140:639–646. https://doi.org/10.1007/s00227-001-0724-2

    Article  Google Scholar 

  39. Maulany RI, Booth DT, Baxter GS (2012) The effect of incubation temperature on hatchling quality in the olive ridley turtle, Lepidochelys olivacea, from alas Purwo National Park, East Java, Indonesia: implications for hatchery management. Mar Biol 159:2651–2661. https://doi.org/10.1007/s00227-012-2022-6

    Article  Google Scholar 

  40. McGehee MA (1990) Effects of moisture on eggs and hatchlings of loggerhead sea turtles (Caretta caretta). Herpetologica 46:251–258 http://www.jstor.org/stable/3892967

  41. Mickelson LE, Downie JR (2010) Influence of incubation temperature on morphology and locomotion performance of leatherback (Dermochelys coriacea) hatchlings. Can J Zool 88:359–368. https://doi.org/10.1139/Z10-007

    Article  Google Scholar 

  42. Miller JD (1999) Determining clutch size and hatching success. In: Eckert KL, Bjorndal KA, Abreu-Grobois FA, Donnelly M (eds) Research and management techniques for the conservation of sea turtles. IUCN/SSC Marine Turtle Specialist Group Publication, Washington DC, pp 124–129

  43. Mitchel NJ, Allendorf FW, Keall SN, Daugherty CH, Nelson NJ (2010) Demographic effects of temperature-dependent sex determination: will tuatara survive global warming? Glob Chang Biol 16:60–72. https://doi.org/10.1111/j.1365-2486.2009.01964.x

    Article  Google Scholar 

  44. Neuwald JL, Valenzuela N (2011) The lesser known challenge of climate change: thermal variance and sex-reversal in vertebrates with temperature-dependent sex determination. PLoS One 6:e18117. https://doi.org/10.1371/journal.pone.0018117

    Article  Google Scholar 

  45. Ospina-Alvarez N, Piferrer F (2008) Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change. PLoS One 3:e2837. https://doi.org/10.1371/journal.pone.0002837

    Article  Google Scholar 

  46. Patiño-Martínez J, Marco A, Quiñones L, Hawkes L (2012) A potential tool to mitigate the impacts of climate change to the Caribbean leatherback sea turtle. Glob Chang Biol 18:401–411. https://doi.org/10.1111/j.1365-2486.2011.02532.x

    Article  Google Scholar 

  47. Patino-Martinez J, Marco A, Quiñones L, Hawkes LA (2014) The potential future influence of sea level rise on leatherback turtle nests. J Exp Mar Biol Ecol 461:116–123. https://doi.org/10.1016/j.jembe.2014.07.021

    Article  Google Scholar 

  48. Pieau C, Mrosovsky N (1991) Transitional range of temperature, pivotal temperatures and thermosensitive stages for sex determination in reptiles. Amphibia-Reptilia 12:169–179. https://doi.org/10.1163/156853891X00149

    Article  Google Scholar 

  49. Pike DA (2013a) Climate influences the global distribution of sea turtle nesting. Glob Ecol Biogeogr 22:555–566. https://doi.org/10.1111/gcb.12025

    Article  Google Scholar 

  50. Pike DA (2013b) Forecasting range expansion into ecological traps: climate-mediated shifts in sea turtle nesting beaches and human development. Glob Chang Biol 19:3082–3092. https://doi.org/10.1111/gcb.12282

    Article  Google Scholar 

  51. Pike DA (2014) Forecasting the viability of sea turtle eggs in a warming world. Glob Chang Biol 20:7–15. https://doi.org/10.1111/gcb.12397

    Article  Google Scholar 

  52. Pike DA, Roznik EA, Bell I (2015) Nest inundation from sea-level rise threatens sea turtle population viability subject category: subject areas : author for correspondence. R Soc Open Sci 2:1–5. https://doi.org/10.1098/rsos.150127

    Article  Google Scholar 

  53. R Core Team (2017) R: A Language and Environment for Statistical Computing. https://www.R-project.org/

  54. Read T, Booth DT, Limpus CJ (2012) Effect of nest temperature on hatchling phenotype of loggerhead turtles (Caretta caretta) from two South Pacific rookeries, Mon Repos and la Roche Percée. Aust J Zool 60:402–411. https://doi.org/10.1071/ZO12079

    Article  Google Scholar 

  55. Rivas ML, Marco A (2016) The effect of dune vegetation on leatherback hatchling's sea-finding ability. Mar Biol 163(1). https://doi.org/10.1007/s00227-015-2796-4

  56. Rivas ML, Santidrian P, Diéguez-Uribeondo J, Marco A (2016a) Potential effects of dune scarps caused by beach erosion on the nesting behaviour of leatherback turtles. Mar Ecol Prog Ser 551:239–248. https://doi.org/10.3354/meps11748

    Article  Google Scholar 

  57. Rivas ML, Fernández C, Marco A (2016b) Nesting ecology and population trend of leatherback turtles Dermochelys coriacea at Pacuare nature reserve. Costa Rica Oryx 50:274–282. https://doi.org/10.1017/S0030605314000775

    Article  Google Scholar 

  58. Rivas ML, Spínola M, Arrieta H, Faife-Cabrera M (2018) Effect of extreme climatic events resulting in prolonged precipitation on the reproductive output of sea turtles. Anim Conserv 21(5):387–395. https://doi.org/10.1111/acv.12404

    Article  Google Scholar 

  59. Saba VS, Stock CA, Spotila JR, Paladino FV, Tomillo PS (2012) Projected response of an endangered marine turtle population to climate change. Nat Clim Chang 2:814–820. https://doi.org/10.1038/nclimate1582

    Article  Google Scholar 

  60. Santidrián Tomillo P, Saba VS, Blanco GS, Stock CA, Paladino FV, Spotila JR (2012) Climate driven egg and hatchling mortality threatens survival of eastern Pacific leatherback turtles. PLoS One 7:1–7. https://doi.org/10.1371/journal.pone.0037602

    Article  Google Scholar 

  61. Santidrián Tomillo P, Genovart M, Paladino FV, Spotila JR, Oro D (2015a) Climate change overruns resilience conferred by temperature-dependent sex determination in sea turtles and threatens their survival. Glob Chang Biol 21:2980–2988. https://doi.org/10.1111/gcb.12918

    Article  Google Scholar 

  62. Santidrián Tomillo P, Saba VS, Lombard CD et al (2015b) Global analysis of the effect of local climate on the hatchling output of leatherback turtles. Sci Rep 5:16789. https://doi.org/10.1038/srep16789

    Article  Google Scholar 

  63. Santidrián Tomillo P, Fonseca L, Paladino FV, Spotila JR, Oro D (2017) Are thermal barriers “higher” in deep sea turtle nests? PLoS One 12:1–14. https://doi.org/10.1371/journal.pone.0177256

    Article  Google Scholar 

  64. Santidrián Tomillo P, Oro D, Paladino FV, Piedra R, Sieg AE, Spotila, JR (2014) High beach temperatures increased female-biased primary sex ratios but reduced output of female hatchlings in the leatherback turtle. Biol Conserv 176, 71–79

    Article  Google Scholar 

  65. Sim EL, Booth DT, Limpus CJ (2015) Incubation temperature, morphology and performance in loggerhead (Caretta caretta) turtle hatchlings from Mon Repos, Queensland. Aust Biol Open 4:685–692. https://doi.org/10.1242/bio.20148995

    Article  Google Scholar 

  66. Standora EA, Spotila JR (1985) Temperature dependent sex determination in sea turtles. Copeia 1985:711–722 http://www.jstor.org/stable/1444765

    Article  Google Scholar 

  67. Stewart K, Sims M, Meylan A, Witherington B, Brost B, Crowder LB (2011) Leatherback nests increasing significantly in Florida, USA; trends assessed over 30 years using multilevel modeling. Ecol Appl 21:263–273. https://doi.org/10.1890/09-1838.1

    Article  Google Scholar 

  68. Steyermark AC, Spotila JR (2001) Body temperature and maternal identity affect snapping turtle (Chelydra serpentina) righting response. Copeia 4:1050–1057. https://doi.org/10.1643/0045-8511

  69. Van de Merwe J, Ibrahim K, Whittier J (2005) Effects of hatchery shading and nest depth on the development and quality of Chelonia mydas hatchlings: implications for hatchery management in peninsular, Malaysia. Aust J Zool 53:205–211. https://doi.org/10.1071/ZO03052

    Article  Google Scholar 

  70. Van Houtan KS, Bass OL (2007) Stormy oceans are associated with declines in sea turtle hatching. Curr Biol 17:590–591. https://doi.org/10.1016/j.cub.2007.06.021

    Article  Google Scholar 

  71. Weber SB, Broderick AC, Groothuis TGG, Ellick J, Godley BJ, Blount JD (2012) Fine-scale thermal adaptation in a green turtle nesting population. Proc Biol Sci 279:1077–1084. https://doi.org/10.1098/rspb.2011.1238

    Article  Google Scholar 

  72. Webster PJ, Holland GJ, Curry JA, Chang HR (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846. https://doi.org/10.1126/science.1116448

    Article  Google Scholar 

  73. Wernberg T, Smale DA, Tuya F (2013) An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Chang 3:78–82. https://doi.org/10.1038/nclimate1627

    Article  Google Scholar 

  74. Wood A, Booth DT, Limpus CJ (2014) Sun exposure, nest temperature and loggerhead turtle hatchlings: implications for beach shading management strategies at sea turtle rookeries. J Exp Mar Biol Ecol 451:105–114. https://doi.org/10.1016/j.jembe.2013.11.005

    Article  Google Scholar 

  75. Woolgar L, Trocini S, Mitchell N (2013) Key parameters describing temperature-dependent sex determination in the southernmost population of loggerhead sea turtles. J Exp Mar Biol Ecol 449:77–84. https://doi.org/10.1016/j.jembe.2013.09.001

    Article  Google Scholar 

  76. Wyneken J, Lolavar A (2015) Loggerhead sea turtle environmental sex determination: implications of moisture and temperature for climate change based predictions for species survival. J Exp Zool Part B Mol Dev Evol 324B:295–314. https://doi.org/10.1002/jez.b.22620

    Article  Google Scholar 

  77. Yntema C, Mrosovsky N (1980) Sexual differentiation in hatchling loggerheads (Caretta caretta) incubated at different controlled temperatures. Herpetologica 36:33–36 http://www.jstor.org/stable/3891850

Download references

Acknowledgements

We thank John Denham and Director Carlos Fernandez for the management of PNR and their involvement in conservation projects. We also thank all coordinators, assistants and volunteers who worked at PNR over the years for their full dedication to the experiments. We thank Dr. Manuel Spinola for support in the analysis of data. The work was also supported by an international mobility grants for prestigious researchers by AIUP and by CEIMAR International Campus of Excellence of the Sea. Research permits were obtained from the Ministry of Environment and Energy (MINAE) of Costa Rica (R-SINAC-ACLAC-PIME- 009-2013).

Author information

Affiliations

Authors

Contributions

MLR and AM conceived and designed the experiments. MLR performed the experiments and analyzed the data. MLR wrote the manuscript and AM and NE revised the manuscript.

Corresponding author

Correspondence to Marga L. Rivas.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 85 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rivas, M.L., Esteban, N. & Marco, A. Potential male leatherback hatchlings exhibit higher fitness which might balance sea turtle sex ratios in the face of climate change. Climatic Change 156, 1–14 (2019). https://doi.org/10.1007/s10584-019-02462-1

Download citation

Keywords

  • Climate change
  • Conservation
  • Endangered species
  • Global warming
  • Incubation period
  • Marine turtles
  • Reproductive output