Skip to main content

Advertisement

Log in

Identifying credible and diverse GCMs for regional climate change studies—case study: Northeastern United States

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Climate data obtained from global climate models (GCMs) form the basis of most studies of regional climate change and its impacts. Using the northeastern U.S. as a test case, we develop a framework to systematically sub-select reliable models for use in climate change studies in the region. Model performance over the historical period is evaluated first for a wide variety of standard and process metrics including large-scale atmospheric circulation features that drive regional climate variability. The inclusion of process-based metrics allows identification of credible models in capturing key processes relevant for the climate of the northeastern U.S. Model performance is then used in conjunction with the assessment of redundancy in model projections, especially in summer precipitation, to eliminate models that have better performing counterparts. Finally, we retain some mixed-performing models to maintain the range of climate model uncertainty, required by the fact that model biases are not strongly related to their respective projections. This framework leads to the retention of 16 of 36 CMIP5 GCMs that (a) have a satisfactory historical performance for a variety of metrics and (b) provide diverse climate projections consistent with uncertainties in the multi-model ensemble (MME). Overall, the models show significant variations in their performance across metrics and seasons with none emerging as the best model in all metrics. The retained set reduces the number of models by more than one half, easing the computational burden of using the entire CMIP5 MME, while still maintaining a wide range of projections for risk assessment. The retention of some mixed-performing models to maintain ensemble uncertainty suggests a potential to narrow the ranges in temperature and precipitation. But any further refinement should be based on a more detailed analysis of models in capturing regional climate variability and extremes to avoid providing overconfident projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barsugli JJ, Guentchev G, Horton RM, Wood A, Mearns LO, Liang XZ, Winkler JA, Dixon K, Hayhoe K, Rood RB et al (2013) The practitioner’s dilemma: how to assess the credibility of downscaled climate projections. Eos Trans Amer Geophys Union 94(46):424–425

    Article  Google Scholar 

  • Bradbury JA, Keim BD, Wake CP (2003) The influence of regional storm tracking and teleconnections on winter precipitation in the northeastern United States. Ann Assoc Am Geogr 93(3):544–556

    Article  Google Scholar 

  • Dee DP, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P et al (2011) The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Deser C, Knutti R, Solomon S, Phillips AS (2012) Communication of the role of natural variability in future North American climate. Nat Clim Chang 2 (11):775–779

    Article  Google Scholar 

  • Deser C, Phillips AS, Alexander MA, Smoliak BV (2014) Projecting North American climate over the next 50 years: uncertainty due to internal variability*. J Clim 27(6):2271–2296

    Article  Google Scholar 

  • Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res Atmos 113(D06104). https://doi.org/10.1029/2007JD008972

  • Harris I, Jones P, Osborn T, Lister D (2014) Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 dataset. Int J Climatol 34(3):623–642

    Article  Google Scholar 

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90(8):1095–1107

    Article  Google Scholar 

  • Horton R, Yohe G, Easterling W, Kates R, Ruth M, Sussman E, Whelchel A, Wolfe D, Lipschultz F (2014) Ch. 16: Northeast. Climate Change Impacts in the United States: The Third National Climate Assessment, pp 371–395

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J et al (1996) The NCEP/NCAR 40-year reanalysis project. Bullet Amer Meteorol Soc 77(3):437–472

    Article  Google Scholar 

  • Karmalkar AV, Bradley RS (2017) Consequences of global warming of 1.5 C and 2 C for regional temperature and precipitation changes in the contiguous United States. PloS one 12(1):e0168697

    Article  Google Scholar 

  • Kay J, Deser C, Phillips A, Mai A, Hannay C, Strand G, Arblaster J, Bates S, Danabasoglu G, Edwards J et al (2015) The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull Am Meteorol Soc 96(8):1333–1349

    Article  Google Scholar 

  • Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J Clim 23(10):2739–2758

    Article  Google Scholar 

  • Knutti R, Masson D, Gettelman A (2013) Climate model genealogy: Generation CMIP5 and how we got there. Geophys Res Lett 40(6):1194–1199

    Article  Google Scholar 

  • Knutti R, Sedláček J, Sanderson BM, Lorenz R, Fischer EM, Eyring V (2017) A climate model projection weighting scheme accounting for performance and interdependence. Geophys Res Lett 44(4):1909– 1918

    Google Scholar 

  • Lynch C, Seth A, Thibeault J (2016) Recent and projected annual cycles of temperature and precipitation in the northeast United States from CMIP5. J Clim 29(1):347–365

    Article  Google Scholar 

  • Maloney ED, Camargo SJ, Chang E, Colle B, Fu R, Geil KL, Hu Q, Jiang X, Johnson N, Karnauskas KB et al (2014) North American climate in CMIP5 experiments: Part III: Assessment of twenty-first-century projections. J Clim 27(6):2230–2270

    Article  Google Scholar 

  • Masson D, Knutti R (2011) Climate model genealogy. Geophys Res Lett 38(L08703). https://doi.org/10.1029/2011GL046864

  • Matsuura K, Willmott CJ (2012) Terrestrial precipitation: 1900-2010 gridded monthly time series (v. 3.01). Center for Climatic Research, Department of Geography, University of Delaware Newark, DE, USA

  • McSweeney CF, Jones RG, Booth BB (2012) Selecting ensemble members to provide regional climate change information. J Clim 25(20):7100–7121

    Article  Google Scholar 

  • McSweeney C, Jones R, Lee R, Rowell D (2015) Selecting CMIP5 GCMs for downscaling over multiple regions. Clim Dyn 44(11-12):3237–3260

    Article  Google Scholar 

  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma M, Lamarque JF, Matsumoto K, Montzka S, Raper S, Riahi K et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109(1-2):213

    Article  Google Scholar 

  • Monerie PA, Sanchez-Gomez E, Boé J (2017) On the range of future Sahel precipitation projections and the selection of a sub-sample of CMIP5 models for impact studies. Clim Dyn 48(7-8):2751–2770

    Article  Google Scholar 

  • Mote P, Brekke L, Duffy PB, Maurer E (2011) Guidelines for constructing climate scenarios. Eos Trans Amer Geophys Union 92(31):257–258

    Article  Google Scholar 

  • Mote PW, Allen MR, Jones RG, Li S, Mera R, Rupp DE, Salahuddin A, Vickers D (2016) Superensemble regional climate modeling for the western United States. Bull Am Meteorol Soc 97(2):203–215

    Article  Google Scholar 

  • Ning L, Bradley RS (2015) Winter climate extremes over the northeastern United States and southeastern Canada and teleconnections with large-scale modes of climate variability. J Clim 28(6):2475–2493

    Article  Google Scholar 

  • Overland JE, Wang M, Bond NA, Walsh JE, Kattsov VM, Chapman WL (2011) Considerations in the selection of global climate models for regional climate projections: The Arctic as a case study. J Clim 24(6):1583–1597

    Article  Google Scholar 

  • Pierce DW, Barnett TP, Santer BD, Gleckler PJ (2009) Selecting global climate models for regional climate change studies. Proc Natl Acad Sci 106(21):8441–8446

    Article  Google Scholar 

  • Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    Article  Google Scholar 

  • Rowell DP, Senior CA, Vellinga M, Graham RJ (2016) Can climate projection uncertainty be constrained over Africa using metrics of contemporary performance? Clim Chang 134(4):621–633

    Article  Google Scholar 

  • Rupp DE, Abatzoglou JT, Hegewisch KC, Mote PW (2013) Evaluation of CMIP5 20th century climate simulations for the Pacific Northwest USA. J Geophys Res: Atmos 118(19):10–884

    Google Scholar 

  • Sanderson BM, Knutti R, Caldwell P (2015) A representative democracy to reduce interdependency in a multimodel ensemble. J Clim 28(13):5171–5194

    Article  Google Scholar 

  • Seager R, Naik N, Vecchi GA (2010) Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Clim 23(17):4651–4668

    Article  Google Scholar 

  • Sheffield J, Barrett AP, Colle B, Nelun Fernando D, Fu R, Geil KL, Hu Q, Kinter J, Kumar S, Langenbrunner B et al (2013) North American climate in CMIP5 experiments. Part I: evaluation of historical simulations of continental and regional climatology. J Clim 26(23):9209–9245

    Article  Google Scholar 

  • Snover AK, Mantua NJ, Littell JS, Alexander MA, Mcclure MM, Nye J (2013) Choosing and using climate-change scenarios for ecological-impact assessments and conservation decisions. Conserv Biol 27(6):1147–1157

    Article  Google Scholar 

  • Staudinger MD, Morelli TL, Bryan AM (2015) Integrating climate change into northeast and midwest state wildlife action plans. DOI Northeast Climate Science Center Report, Amherst

    Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res: Atmos 106(D7):7183–7192

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  • Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society of London A: Mathematical. Phys Eng Sci 365(1857):2053–2075

    Article  Google Scholar 

  • Thibeault JM, Seth A (2014) A framework for evaluating model credibility for warm-season precipitation in northeastern North America: a case study of CMIP5 simulations and projections. J Clim 27(2):493–510

    Article  Google Scholar 

  • Thibeault JM, Seth A (2015) Toward the credibility of Northeast United States summer precipitation projections in CMIP5 and NARCCAP simulations. J Geophys Res Atmos 120(19):10050–10073. https://doi.org/10.1002/2015JD023177

  • Vano JA, Kim JB, Rupp DE, Mote PW (2015) Selecting climate change scenarios using impact-relevant sensitivities. Geophys Res Lett 42(13):5516–5525

    Article  Google Scholar 

  • Wallace JM, Deser C, Smoliak BV, Phillips AS (2016) Attribution of climate change in the presence of internal variability. In: Climate change: Multidecadal and Beyond, World Scientific, pp 1–29

  • Weigel AP, Knutti R, Liniger MA, Appenzeller C (2010) Risks of model weighting in multimodel climate projections. J Clim 23(15):4175–4191

    Article  Google Scholar 

  • Whetton P, Hennessy K, Clarke J, McInnes K, Kent D (2012) Use of representative climate futures in impact and adaptation assessment. Clim Change 115(3-4):433–442

    Article  Google Scholar 

  • Wuebbles D, Fahey D, Hibbard K, Dokken B, Stewart B, Maycock T (2017) Climate science special report: Fourth national climate assessment, Volume I. In: Washington, DC, pp 470

Download references

Acknowledgements

We acknowledge the WCRP Working Group on Coupled Modelling, and thank the climate modeling centers for producing and making available model output. We thank the three anonymous reviewers for their careful review and insightful comments that have helped improve the manuscript substantially.

Funding

This research was supported by the U.S. DOI’s Northeast Climate Adaptation Science Center by Grant or Cooperative Agreement No. G12AC00001 from the United States Geological Survey (USGS) and in part by NSF CAREER Award No. 1056216. Its contents are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambarish V. Karmalkar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 6.47 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmalkar, A.V., Thibeault, J.M., Bryan, A.M. et al. Identifying credible and diverse GCMs for regional climate change studies—case study: Northeastern United States. Climatic Change 154, 367–386 (2019). https://doi.org/10.1007/s10584-019-02411-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-019-02411-y

Navigation