Impacts of climate change on bovine livestock production in Argentina

  • Alfredo L. RollaEmail author
  • Mario N. Nuñez
  • Jorge J. Ramayón
  • Martín E. Ramayón


The study considers the most important livestock regions of Argentina and the correlation between livestock and climate units. The conceptual scheme designed to understand these effects of climate elements on cattle describes a basic direct action by the air temperature in the environment in which they develop, considering temperature as the limit for the distribution of breeds and other action through its effects on vegetation and forage resources that will be available. The work done here shows a shift of the livestock regions southward and eastward simultaneously in the region under consideration. This is a consequence of the displacement towards the south of the isotherm of 26 °C and towards the east of the humidity indices, co-incidentally with the displacement of the isohyets of 600 and 1200 mm. As a consequence of the climate change, according to the CCSM4 climate model, in the near and far future under two emission scenarios, the regions suitable for tropical livestock (breeds with high heat tolerance as the Bos indicus) will extend to the southeast, displacing and reducing the regions suitable for European breed cattle. The displacement of the higher rainfall area mainly to the east could benefit livestock production by increasing forage and reducing livestock feed requirements.



  1. 3CN (2015a) Secretaría de Ambiente y Desarrollo Sustentable de la Nación. Tercera Comunicación Nacional sobre Cambio Climático.
  2. 3CN (2015b) Secretaría de Ambiente y Desarrollo Sustentable de la Nación. Tercera Comunicación Nacional sobre Cambio Climático. Agricultura y Ganadería: Impacto y Vulnerabilidad al Cambio Climático. Posibles Medidas de Adaptación.
  3. Argentina climate change report to UNCCF, 3CN, 2015. (
  4. Asociación Braford Argentina (2016)
  5. Augustine DJ, Blumenthal DM, Springer TL, LeCain DR, Gunter SA, Derner JD (2018) Elevated CO2 induces substantial and persistent declines in forage quality irrespective of warming in mixed grass prairie. Ecol Appl 28(3):721–735. CrossRefGoogle Scholar
  6. Barros V, Castañeda y ME, Doyle M (2000) Recent precipitation trends in Southern South America to the East of the Andes: an indication of a mode of climatic variability. In Southern Hemisphere Paleo and Neoclimates, Concepts, Methods, Problems. Springer Verlag, New YorkGoogle Scholar
  7. Blackshaw JK, Blackshaw AW (1994) Aust J Exp Agric 34(2):285–295. © CSIROCrossRefGoogle Scholar
  8. Burgos JJ (1958) Agroclimatic classifications and representations (report on the application value of climatic and agroclimatic classifications for agricultural purposes). Varsovia, World Meteorological Organization for Agricultural Meteorology.  (CAgM. II/ Doc 18) Google Scholar
  9. de Freitas AK, Lobato J, Cardoso L, Tarouco J, Vieira RM, Dillenburg DR, Castro I (2013) Nutritional composition of the meat of Hereford and Braford steers finished on pastures or in a feedlot in southern Brazil. Meat Sci 96:353–360. CrossRefGoogle Scholar
  10. de las Carreras A, Gorelik M (2012) El País de la Carne. Ideas para recuperar la ganaderia Argentina. p 33–35Google Scholar
  11. FAO & New Zealand Agricultural Greenhouse Gas Research Centre (2017) Low-emissions development of the beef cattle sector in Argentina - reducing enteric methane for food security and livelihoods. Rome. 39 ppGoogle Scholar
  12. Garcia PT, Casal JJ (1992) Lipids in longissimus muscle from grass or grain fed steers. In: Proceeding of 38th International Congress of Meat Science and Technology (Vol 2). Clermont-Ferrand, France, p 53–56Google Scholar
  13. Hayman RH (1972) Bos indicus and Bos taurus crossbred dairy cattle in Australia. I. Crossbreeding with selection among filial generations. Aust J Agric Res 23:519–532CrossRefGoogle Scholar
  14. IPCC (2014) Climate Change 2014: Synthesis Report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva 151ppGoogle Scholar
  15. Knutti R, Abramowitz G, Collins M, Eyring V, Gleckler PJ, Hewitson B, Mearns L (2010) Good practice guidance paper on assessing and combining multi model climate projections. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Midgley PM (eds) Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Assessing and Combining Multi Model Climate Projections. IPCC Working Group I Technical Support Unit, University of Bern, BernGoogle Scholar
  16. Loewer O, Parsch LD (1995a) Graze beef – forage simulation model. User Guide. Southern Cooperative Series Bulletin 381 A, Fayetteville, University of ArkansasGoogle Scholar
  17. Loewer O, Parsch LD (1995b) Graze Beef – forage simulation model. Case Studies. Southern Cooperative Series Bulletin 381 B, Fayetteville, University of ArkansasGoogle Scholar
  18. Nuñez MN, Ciappesoni HH, Rolla A, Kalnay E, Cai M (2008) Impact of land-use and precipitation changes on surface temperature trends in Argentina. J Geophys Res 113:D06111. CrossRefGoogle Scholar
  19. Rearte DH (2007) La producción de carne en Argentina. II. Programa Nacional de Carnes. Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina. Accessed 24 Aug 2011
  20. Rolla A, Nuñez M, Guevara H, Meira S, Rodriguez G, Ortiz de Zárate MI (2018) Climate impacts on crop yields in Central Argentina. Adaptation strategies. Agric Syst 160:44–59. CrossRefGoogle Scholar
  21. Sudmeyer R, Edward A, Fazakerley V, Simpkin L, Foster I (2016) Climate change: impacts and adaptation for agriculture in Western Australia. Department of Agriculture and Food, Western Australia, Perth. Bulletin 4870Google Scholar
  22. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38(1):55–94CrossRefGoogle Scholar
  23. Thrasher B, Maurer EP, McKellar C, Duffy PB (2012) Technical note: bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol Earth Syst Sci 16:3309–3314. CrossRefGoogle Scholar
  24. Vuuren v et al (2011) The representative concentration pathways: an overview. Clim Chang 109(1–2):5–31CrossRefGoogle Scholar
  25. Yousef MK (1985) Stress physiology in livestock. Ungulates. CRC Press, v.2, p.151–174. ISBN:0849356687, 9780849356681Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Centro de Investigaciones del Mar y la Atmósfera (CIMA)CONICET - Universidad de Buenos AiresBuenos AiresArgentina
  2. 2.Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias de la Atmósfera y los OcéanosUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Estudio Belaustegui y Ramayon S.ABuenos AiresArgentina

Personalised recommendations