Advertisement

Climatic Change

, Volume 150, Issue 3–4, pp 319–331 | Cite as

Range expansion and redefinition of a crop-raiding rodent associated with global warming and temperature increase

  • Emiliano MoriEmail author
  • Andrea Sforzi
  • Giuseppe Bogliani
  • Pietro Milanesi
Article

Abstract

Since the 1970s, the crested porcupine Hystrix cristata has shown a marked range expansion in Italy. A web page has been created to collect occurrences of this species to monitor its distribution redefinition. Thus, aims of this work were (i) to identify the main predictors promoting the distribution of this large rodent in Italy and (ii) to predict its potential expansion under future climate change scenarios. A total of 1674 locations were used for this analysis, i.e., all those collected through the web page, with the exception of recently introduced populations (Sardinia, Western Liguria and Province of Varese). The current distribution of the crested porcupine covers a total of 135,177 km2, as estimated through ensemble predictions. Future climate change scenarios for 2050 and 2070 show that a further range expansion by this species would occur up to 225,576 km2, mainly towards areas where the species was historically absent. The increase of isothermality (i.e., the ratio between the mean diurnal and the annual temperature range) and the mean temperature of the driest months would help crested porcupines to reach high altitudes, e.g., in the Alps. In mountain habitats, the ongoing global warming is shifting the distribution of European forests to high elevations, thus potentially providing porcupines with suitable habitats. A reduction in snow cover and the snow period at ground level would remove an important barrier to the range expansion of the crested porcupine in Italy, and thus facilitate digging and food search by this large rodent. Despite being protected at national and international levels, the crested porcupine is reported to be an introduced species to Italy and, therefore, monitoring its range expansion is required. Furthermore, there are complaints about crop damage in agriculture ecosystems, and the species is still widely poached, thus additional management practices are required. Thus, given the conservation interest of this large rodent, an integrated and constantly updated monitoring system that sustains an addressed set of decision-making tools is recommended.

Keywords

Climate change Hystrix cristata Italian peninsula Management practices Range redefinition 

Notes

Acknowledgements

The authors would like to thank Dr. Vasco Sfondrini who took the time to revise the first version of our manuscript, Dylan Bell and Kelsey Horvath for improving the English grammar and syntax. Three anonymous reviewers and Dr. Erik Beever improved the first version of this manuscript with useful comments.

Supplementary material

10584_2018_2261_MOESM1_ESM.docx (13 kb)
Table S1 (DOCX 13 kb)
10584_2018_2261_MOESM2_ESM.docx (36 kb)
ESM 1 (DOCX 36 kb)
10584_2018_2261_MOESM3_ESM.docx (503 kb)
Fig. S1 (DOCX 503 kb)

References

  1. Alexander JM, Edwards PJ (2010) Limits to the niche and range margins of alien species. Oikos 119:1377–1386CrossRefGoogle Scholar
  2. Alkon PU, Saltz D (1988) Foraging time and the northern range limits of Indian crested porcupines (Hystrix indica Kerr). J Biogeogr 15:403–408CrossRefGoogle Scholar
  3. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232CrossRefGoogle Scholar
  4. Ancillotto L, Santini L, Ranc N, Maiorano L, Russo D (2016) Extraordinary range expansion in a common bat: the potential roles of climate change and urbanization. Sci Nat 103:15CrossRefGoogle Scholar
  5. Andrewartha HG, Birch LC (1954) The distribution and abundance of animals. University of Chicago Press, ChicagoGoogle Scholar
  6. Balestrieri A, Bogliani G, Boano G, Ruiz-González A, Saino N, Costa S, Milanesi P (2016) Modelling the distribution of forest-dependent species in human-dominated landscapes: patterns for the pine marten in intensively cultivated lowlands. PLoS One 11:e0158203CrossRefGoogle Scholar
  7. Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Chang 59:5–31CrossRefGoogle Scholar
  8. Bertolino S, Cordero di Montezemolo N, Preatoni DG, Wauters LA, Martinoli A (2014) A grey future for Europe: Sciurus carolinensis is replacing native red squirrels in Italy. Biol Invasions 16:53–62CrossRefGoogle Scholar
  9. Bertolino S, Colangelo P, Mori E, Capizzi D (2015) Good for management, not for conservation: an overview of research, conservation and management of Italian small mammals. Hystrix 26:25–35Google Scholar
  10. Bertolino S, Büchner F, Mori E, Büchner S (2016) Presence of the hazel dormouse Muscardinus avellanarius at the limit of its altitudinal range. Hystrix 27:215–218Google Scholar
  11. Bollin E, Leo R (2013) Prima segnalazione di istrice Hystrix cristata L. in provincia di Brescia. Natura Bresciana 38:149Google Scholar
  12. Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  13. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Chapman and Hall, New YorkGoogle Scholar
  14. Bruno E, Riccardi C (1995) The diet of the crested porcupine Hystrix cristata L., 1758 in a Mediterranean area. Mamm Biol 60:226–236Google Scholar
  15. Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519CrossRefGoogle Scholar
  16. Calenge C, Darmon G, Basille M, Loison A, Jullien J (2008) The factorial decomposition of the Mahalanobis distances in habitat selection studies. Ecology 89:555–566CrossRefGoogle Scholar
  17. Carone MT, Guisan A, Cianfrani C, Simoniello T, Loy A, Carranza ML (2014) A multi-temporal approach to model endangered species distribution in Europe. The case of Eurasian otter in Italy. Ecol Model 274:21–28CrossRefGoogle Scholar
  18. Cerri J, Mori E, Vivarelli M, Zaccaroni M (2017) Are wildlife value orientations useful tools to explain tolerance and illegal killing of wildlife by farmers in response to crop damage? Eur J Wildl Res 63:70CrossRefGoogle Scholar
  19. Ching-Cheng I, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026CrossRefGoogle Scholar
  20. Chiodo E, Mori E (2015) Nuove segnalazioni di istrice Hystrix cristata in Piemonte, con particolare riferimento alla provincia di Torino. Riv Piem Sto Nat 36:247–252Google Scholar
  21. Corsini MT, Lovari S, Sonnino S (1995) Temporal activity patterns of crested porcupines Hystrix cristata. J Zool (Lond) 236:43–54CrossRefGoogle Scholar
  22. Cuzin F (2003) Les grands mammifères du Maroc méridional (Haut Atlas, Anti Atlas et Sahara): Distribution, Ecologie et Conservation. Ph.D. Thesis, Laboratoire de Biogéographie et Ecologie des Vertèbrés, Ecole Pratique des Hautes Etudes, Université Montpellier II, Montpellier, FranceGoogle Scholar
  23. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettman F, Leathwick JR, Lehmann A, Li J, Lohmann L, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips S, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams SE, Wisz M, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecogr 29:129–151CrossRefGoogle Scholar
  24. Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. Plos ONE 9:1–13CrossRefGoogle Scholar
  25. Friedman L (1991) Multivariate additive regression splines. Ann Stat 1:1–67CrossRefGoogle Scholar
  26. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232CrossRefGoogle Scholar
  27. Gaston KJ (2009) Geographic range limits of the species. Proc R Soc 276:1391–1393CrossRefGoogle Scholar
  28. Ghigi A (1917) I mammiferi d’Italia considerati nei loro rapport con l’agricoltura. Nat Milano 8:85–137Google Scholar
  29. Golding N, Golding MN (2014) The package ‘GRaF’. Species distribution modelling using latent Gaussian random fields. Available at https://cran.r-project.org/web/packages/GRaF/GRaF.pdf. Accessed on 27th December 2016
  30. Golding N, Purse BV (2016) Fast and flexible Bayesian species distribution modelling using Gaussian processes. Methods Ecol Evol 7:598–608CrossRefGoogle Scholar
  31. Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barančok P, Alonso JLB, Coldea G, Ershbamer B, Calzado MRF, Kazakis G, Krajči J, Larsson P, Mallaun M, Michelsen O, Moiseev D, Molau U, Merzouki A, Nagy L, Nakhutsrishvili G, Pedersen B, Pelino G, Puscas M, Rossi G, Stanisci A, Theurillat JP, Tomaselli M, Villar L, Vittoz P, Vogiatzakis I, Grabherr G (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Chang 2:111–115CrossRefGoogle Scholar
  32. Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot 90:537–544CrossRefGoogle Scholar
  33. Grano M (2016) An unusual urban refuge for the crested porcupine, Hystrix cristata, (Linnaeus, 1758) (Mammalia Rodentia): the ancient Catacombs of Priscilla in Rome (Italy). Biodiv J 7:345–346Google Scholar
  34. Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AIT, Regan TJ, Brotons L, McDonald-Madden E, Mantyka-Pringle C, Martin TG, Rhodes JR, Maggini R, Setterfield SA, Elith J, Schwartz MW, Wintle BA, Broennimann O, Austin M, Ferrier S, Kearney MR, Possingham HP, Buckley YM (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435CrossRefGoogle Scholar
  35. Hastie TJ, Tibshirani R (1990) Generalized additive models. Chapman and Hall, LondonGoogle Scholar
  36. Hastie T, Tibshirani R, Buja A (1994) Flexible discriminant analysis by optimal scoring. J Am Stat Assoc 89:1255–1270CrossRefGoogle Scholar
  37. Huey R, Gilchrist GW, Carlsen M (2000) Rapid evolution of a latitudinal cline in body size of an introduced fly. Science 287:308–309CrossRefGoogle Scholar
  38. Hulme PE (2017) Climate change and biological invasions: evidence, expectations, and response options. Biol Rev 92:1297–1313CrossRefGoogle Scholar
  39. Ihlow F, Courant J, Secondi J, Herrel A, Rebelo R, Measey GJ, Lillo F, De Villiers FA, Vogt S, De Busschere C, Backeljau T, Rödder D (2016) Impacts of climate change on the global invasion potential of the African clawed frog Xenopus laevis. PLoS One 11:e0154869CrossRefGoogle Scholar
  40. Klein G, Vitasse Y, Rixen C, Marty C, Rebetez M (2016) Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset. Clim Chang 139:637–649CrossRefGoogle Scholar
  41. Laurenzi A, Bodino N, Mori E (2016) Much ado about nothing: assessing the impact of a problematic rodent on agriculture and native trees. Mamm Res 61:65–72CrossRefGoogle Scholar
  42. Levinsky I, Skov F, Svenning JC, Rahbek C (2007) Potential impacts of climate change on the distributions and diversity of European mammals. Biodivers Conserv 16:3803–3816CrossRefGoogle Scholar
  43. Lovari S, Corsini MT, Guazzini B, Romeo G, Mori E (2017) Suburban ecology of the crested porcupine in a heavily poached area: a global approach. Eur J Wildl Res 63:10CrossRefGoogle Scholar
  44. Luna A, Franz D, Strubbe D, Shwartz A, Braun MP, Hernàndez-Brito D, Malihi Y, Kaplan A, Mori E, Menchetti M, van Turnhout CAM, Parrott D, Chmielewski FM, Edelaar P (2017) Reproductive timing as a constraint on invasion success in the ring-necked parakeet (Psittacula krameri). Biol Invasions 19:2247–2259CrossRefGoogle Scholar
  45. Mancino G, Nolè A, Ripullone F, Ferrara A (2014) Landsat TM imagery and NDVI differencing to detect vegetation change: assessing natural forest expansion in Basilicata, southern Italy. iForest 7:75–84CrossRefGoogle Scholar
  46. Mason TH, Stephens PA, Apollonio M, Willis SG (2014) Predicting potential responses to future climate in an alpine ungulate: interspecific interactions exceed climate effects. Glob Chang Biol 20:3872–3882CrossRefGoogle Scholar
  47. Masseti M, Albarella U, De Grossi MJ (2010) The crested porcupine, Hystrix cristata L., 1758, in Italy. Anthropozoologica 45:27–42CrossRefGoogle Scholar
  48. Massolo A (2000) Ecologia comportamentale dell’istrice Hystrix cristata L., 1758, in un’area costiera del Mediterraneo. Ph.D. Dissertation in Biologia Animale (Zoologia), Università degli Studi di Siena, Siena, ItalyGoogle Scholar
  49. Mathewson PD, Moyer-Horner L, Beever EA, Briscoe NJ, Kearney M, Yahn JM, Porter WP (2017) Mechanistic variables can enhance predictive models of endotherm distributions: the American pika under current, past, and future climates. Glob Chang Biol 23:1048–1064CrossRefGoogle Scholar
  50. McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall, LondonCrossRefGoogle Scholar
  51. McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260CrossRefGoogle Scholar
  52. Milanesi P, Holderegger R, Caniglia R, Fabbri E, Randi E (2015) Different habitat suitability models yield different least-cost path distances for landscape genetic analysis. Basic Appl Ecol 17:61–71CrossRefGoogle Scholar
  53. Milanesi P, Breiner F, Puopolo F, Holderegger R (2016a) European human-dominated landscapes provide ample space for the recolonization of large carnivore populations under future land change scenarios. Ecography 40:1359–1368CrossRefGoogle Scholar
  54. Milanesi P, Holderegger R, Caniglia R, Fabbri E, Galaverni M, Randi E (2016b) Expert-based versus habitat-suitability models to develop resistance surfaces in landscape genetics. Oecologia 183:67–79CrossRefGoogle Scholar
  55. Mohr E (1965) Altweltliche Stachelschweine. Ziemsen Verlag Publisher, Wittenburg Lutherstadt, GermanyGoogle Scholar
  56. Monetti L, Massolo A, Sforzi A, Lovari S (2005) Site selection and fidelity by crested porcupines for denning. Ethol Ecol Evol 17:149–159CrossRefGoogle Scholar
  57. Mori E (2017) Porcupines in the landscape of fear: effect of hunting with dogs on the behaviour of a non-target species. Mamm Res 62:251–258CrossRefGoogle Scholar
  58. Mori E, Bertolino S (2015) Feeding ecology of long-eared owls in winter: an urban perspective. Bird Study 62:257–261CrossRefGoogle Scholar
  59. Mori E, Lovari S (2014) Sexual size monomorphism in the crested porcupine (Hystrix cristata). Mamm Biol 79:157–160CrossRefGoogle Scholar
  60. Mori E, Plebani M (2012) First records of Moorish gecko Tarentola mauritanica and Turkish gecko Hemidactylus turcicus (Squamata, Gekkonidae) in the Southern Metalliferous Hills, Tuscany, Italy. Atti Soc Tosc Sci Nat 119:51–54Google Scholar
  61. Mori E, Sforzi A, Di Febbraro M (2013) From the Apennines to the Alps: recent range expansion of the crested porcupine Hystrix cristata L., 1758 (Mammalia: Rodentia: Hystricidae) in Italy. Ital J Zool 80:469–480CrossRefGoogle Scholar
  62. Mori E, Lovari S, Sforzi A, Romeo G, Pisani C, Massolo A, Fattorini L (2014a) Patterns of spatial overlap in a monogamous large rodent, the crested porcupine. Behav Proc 107:112–118CrossRefGoogle Scholar
  63. Mori E, Nourisson DH, Lovari S, Romeo G, Sforzi A (2014b) Self-defence may not be enough: moonlight avoidance in a large, spiny rodent. J Zool (Lond) 294:31–40CrossRefGoogle Scholar
  64. Mori E, Mazza G, Menchetti M, Panzeri M, Gager Y, Bertolino S, Di Febbraro M (2015a) The masked invader strikes again: the conquest of Italy by the Northern raccoon. Hystrix 26:47–51Google Scholar
  65. Mori E, Sforzi A, Menchetti M, Mazza G, Lovari S, Pisanu B (2015b) Ectoparasite load in the crested porcupine Hystrix cristata Linnaeus, 1758 in Central Italy. Parasitol Res 114:2223–2229CrossRefGoogle Scholar
  66. Mori E, Menchetti M, Lucherini M, Sforzi A, Lovari S (2016) Timing of reproduction and paternal cares in the crested porcupine. Mamm Biol 81:345–349CrossRefGoogle Scholar
  67. Mori E, Baeri A, Sforzi A, Vitale A, Galimberti A (2017) From accidental citizen-science observations to genetic confirmation: how to spot new hidden invaders. Hystrix 28:284–287Google Scholar
  68. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747CrossRefGoogle Scholar
  69. Orsomando E, Pedrotti F (1976) Notizie sulla presenza dell’istrice nelle Marche e nell’Umbria. In: Pedrotti F (ed) SOS Fauna, Animali in pericolo in Italia. WWF Report, Camerino, pp 249–263Google Scholar
  70. Pandolfi M (1976) Modificazioni recenti dell’areale di Hystrix cristata Linnaeus, 1758, nell’Italia Centrale Adriatica. Hystrix 1:69–76Google Scholar
  71. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669CrossRefGoogle Scholar
  72. Parmesan C, Matthews J (2006) Biological impacts of climate change. In: Groom MJ, Meffe GK, Carroll CR (eds) Principles of conservation biology. Sinauer Associates, Inc., Sunderland, pp 333–374Google Scholar
  73. Pasinelli G, Grendelmeier A, Gerber M, Arlettaz R (2016) Rodent-avoidance, topography and forest structure shape territory selection of a forest bird. BMC Ecol 16:1CrossRefGoogle Scholar
  74. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  75. Piussi P (2000) Expansion of European mountain forests. In: Price MF, Butt N (eds) Forests in sustainable mountain development: a state of knowledge report for 2000. Task Force on Forests in Sustainable Mountain Development. Cabi Editors, London, UK, pp 19–28Google Scholar
  76. Ripley BD (2007) Pattern recognition and neural networks. Cambridge University Press, CambridgeGoogle Scholar
  77. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60CrossRefGoogle Scholar
  78. Rosenzweig C (2007) Impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palut JP. van der Linden PJ, Hanson CE (eds) Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 79–131Google Scholar
  79. Roth T, Plattner M, Amrhein V (2014) Plants, birds and butterflies: short-term responses of species communities to climate warming vary by taxon and with altitude. Plos ONE e82490Google Scholar
  80. Rowe KC, Rowe KM, Tingley MW, Koo MS, Patton JL, Conroy CJ, Perrine JD, Bessinger SR, Moritz C (2015) Spatially heterogeneous impact of climate change on small mammals of montane California. Proc R Soc Lond 282:20141857CrossRefGoogle Scholar
  81. Roze U (2009) The North American porcupine. Cornell University Press, IthacaGoogle Scholar
  82. Sexton JP, McIntyre PJ, Angert AL, Rice KJ (2009) Evolution and ecology of species range limits. Annu Rev Ecol Evol Syst 40:415–436CrossRefGoogle Scholar
  83. Sillett TS, Holmes RT, Sherry TW (2000) Impacts of a global climate cycle on population dynamics of a migratory songbird. Science 288:2040–2042CrossRefGoogle Scholar
  84. Sonnino S (1998) Spatial activity and habitat use of crested porcupine, Hystrix cristata L., 1758 (Rodentia, Hystricidae) in central Italy. Mammalia 62:175–189CrossRefGoogle Scholar
  85. Spada A, Bon M, Latella L, Salmaso R (2008) Primi indizi di riproduzione di istrice, Hystrix cristata, in Veneto (Rodentia: Hystricidae). Atti del V Convegno dei Faunisti Veneti, 12–13 May 2007, Legnaro (PD), pp 323–327Google Scholar
  86. Stolar J, Nielsen SE (2014) Accounting for spatially biased sampling effort in presence-only species distribution modelling. Divers Distrib 21:595–608CrossRefGoogle Scholar
  87. Su S, Cassey P, Dyer EE, Blackburn TM (2017) Geographical range expansion of alien birds and environmental matching. Ibis 159:193–203CrossRefGoogle Scholar
  88. Svenning JC, Normand S, Skov F (2008) Postglacial dispersal limitation of widespread forest plant species in nemoral Europe. Ecography 31:316–326CrossRefGoogle Scholar
  89. Thomas CD (2010) Climate, climate change and range boundaries. Divers Distrib 16:488–495CrossRefGoogle Scholar
  90. Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD: a platform for ensemble forecasting of species distributions. Ecography 32:369–373CrossRefGoogle Scholar
  91. Thuiller W, Georges D, Engler R, Breiner F, Georges MD, Thuiller CW (2016) Package ‘biomod2’. Available at: https://cran.r-project.org/web/packages/biomod2/biomod2.pdf . Accessed on 27th December 2016
  92. Tomei PE, Cavalli S (1976) L’areale dell’istrice a nord dell’Arno. Atti Soc Tosc Sci Nat 83:42–48Google Scholar
  93. Trucchi E, Sbordoni V (2009) Unveiling an ancient biological invasion: molecular analysis of an old European alien, the crested porcupine (Hystrix cristata). BMC Evol Biol 9:109CrossRefGoogle Scholar
  94. Trucchi E, Facon B, Gratton P, Mori E, Stenseth NC, Jentoft S (2016) Long live the alien: is high genetic diversity a pivotal aspect of crested porcupine (Hystrix cristata) long-lasting and successful invasion? Mol Ecol 25:3527–3539CrossRefGoogle Scholar
  95. Urban MC (2015) Accelerating extinction risk from climate change. Science 348:571–573CrossRefGoogle Scholar
  96. Veech JA, Small MF, Baccus JT (2011) The effect of habitat on the range expansion of a native and an introduced bird species. J Biogeogr 38:69–77CrossRefGoogle Scholar
  97. Viviani F, Trucchi E (2007) La popolazione di istrice (Hystrix cristata L.) delle Alpi Apuane: analisi preliminari su distribuzione e caratterizzazione genetica. Acta Apuana 7:1–4Google Scholar
  98. Walther GR, Beissner S, Burga CA (2005) Trends in the upward shift of alpine plants. J Veg Sci 16:541–548CrossRefGoogle Scholar
  99. Wilson RJ, Gutierrez D (2012) Effects of climate change on the elevational limits of species ranges. In: Beever EA, Belant JL (eds) Ecological consequences of climate change: mechanisms, conservation, and management. CRC Press, Taylor and Francis group, Boca Raton, pp 107–132Google Scholar
  100. Wilson RJ, Gutierrez D, Gutierrez J, Martìnez D, Agudo R, Montserrat VJ (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett 8:1138–1146CrossRefGoogle Scholar
  101. Woodward FI (1987) Climate and plant distribution. Cambridge University Press, CambridgeGoogle Scholar
  102. Zeeman MJ, Mauder M, Steinbrecher R, Heidbach K, Eckart E, Schmid HP (2017) Reduced snow cover affects productivity of upland temperate grasslands. Agric For Meteorol 232:514–526CrossRefGoogle Scholar
  103. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Research Unit of Behavioural Ecology, Ethology and Wildlife Management - Department of Life SciencesUniversity of SienaSienaItaly
  2. 2.Museo di Storia Naturale della MaremmaGrossetoItaly
  3. 3.Department of Earth and Environmental SciencesUniversity of PaviaPaviaItaly
  4. 4.Swiss Ornithological InstituteSempachSwitzerland

Personalised recommendations