Range expansion and redefinition of a crop-raiding rodent associated with global warming and temperature increase

Abstract

Since the 1970s, the crested porcupine Hystrix cristata has shown a marked range expansion in Italy. A web page has been created to collect occurrences of this species to monitor its distribution redefinition. Thus, aims of this work were (i) to identify the main predictors promoting the distribution of this large rodent in Italy and (ii) to predict its potential expansion under future climate change scenarios. A total of 1674 locations were used for this analysis, i.e., all those collected through the web page, with the exception of recently introduced populations (Sardinia, Western Liguria and Province of Varese). The current distribution of the crested porcupine covers a total of 135,177 km2, as estimated through ensemble predictions. Future climate change scenarios for 2050 and 2070 show that a further range expansion by this species would occur up to 225,576 km2, mainly towards areas where the species was historically absent. The increase of isothermality (i.e., the ratio between the mean diurnal and the annual temperature range) and the mean temperature of the driest months would help crested porcupines to reach high altitudes, e.g., in the Alps. In mountain habitats, the ongoing global warming is shifting the distribution of European forests to high elevations, thus potentially providing porcupines with suitable habitats. A reduction in snow cover and the snow period at ground level would remove an important barrier to the range expansion of the crested porcupine in Italy, and thus facilitate digging and food search by this large rodent. Despite being protected at national and international levels, the crested porcupine is reported to be an introduced species to Italy and, therefore, monitoring its range expansion is required. Furthermore, there are complaints about crop damage in agriculture ecosystems, and the species is still widely poached, thus additional management practices are required. Thus, given the conservation interest of this large rodent, an integrated and constantly updated monitoring system that sustains an addressed set of decision-making tools is recommended.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alexander JM, Edwards PJ (2010) Limits to the niche and range margins of alien species. Oikos 119:1377–1386

    Article  Google Scholar 

  2. Alkon PU, Saltz D (1988) Foraging time and the northern range limits of Indian crested porcupines (Hystrix indica Kerr). J Biogeogr 15:403–408

    Article  Google Scholar 

  3. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  4. Ancillotto L, Santini L, Ranc N, Maiorano L, Russo D (2016) Extraordinary range expansion in a common bat: the potential roles of climate change and urbanization. Sci Nat 103:15

    Article  Google Scholar 

  5. Andrewartha HG, Birch LC (1954) The distribution and abundance of animals. University of Chicago Press, Chicago

    Google Scholar 

  6. Balestrieri A, Bogliani G, Boano G, Ruiz-González A, Saino N, Costa S, Milanesi P (2016) Modelling the distribution of forest-dependent species in human-dominated landscapes: patterns for the pine marten in intensively cultivated lowlands. PLoS One 11:e0158203

    Article  Google Scholar 

  7. Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Chang 59:5–31

    Article  Google Scholar 

  8. Bertolino S, Cordero di Montezemolo N, Preatoni DG, Wauters LA, Martinoli A (2014) A grey future for Europe: Sciurus carolinensis is replacing native red squirrels in Italy. Biol Invasions 16:53–62

    Article  Google Scholar 

  9. Bertolino S, Colangelo P, Mori E, Capizzi D (2015) Good for management, not for conservation: an overview of research, conservation and management of Italian small mammals. Hystrix 26:25–35

    Google Scholar 

  10. Bertolino S, Büchner F, Mori E, Büchner S (2016) Presence of the hazel dormouse Muscardinus avellanarius at the limit of its altitudinal range. Hystrix 27:215–218

    Google Scholar 

  11. Bollin E, Leo R (2013) Prima segnalazione di istrice Hystrix cristata L. in provincia di Brescia. Natura Bresciana 38:149

    Google Scholar 

  12. Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  13. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Chapman and Hall, New York

    Google Scholar 

  14. Bruno E, Riccardi C (1995) The diet of the crested porcupine Hystrix cristata L., 1758 in a Mediterranean area. Mamm Biol 60:226–236

    Google Scholar 

  15. Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519

    Article  Google Scholar 

  16. Calenge C, Darmon G, Basille M, Loison A, Jullien J (2008) The factorial decomposition of the Mahalanobis distances in habitat selection studies. Ecology 89:555–566

    Article  Google Scholar 

  17. Carone MT, Guisan A, Cianfrani C, Simoniello T, Loy A, Carranza ML (2014) A multi-temporal approach to model endangered species distribution in Europe. The case of Eurasian otter in Italy. Ecol Model 274:21–28

    Article  Google Scholar 

  18. Cerri J, Mori E, Vivarelli M, Zaccaroni M (2017) Are wildlife value orientations useful tools to explain tolerance and illegal killing of wildlife by farmers in response to crop damage? Eur J Wildl Res 63:70

    Article  Google Scholar 

  19. Ching-Cheng I, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  Google Scholar 

  20. Chiodo E, Mori E (2015) Nuove segnalazioni di istrice Hystrix cristata in Piemonte, con particolare riferimento alla provincia di Torino. Riv Piem Sto Nat 36:247–252

    Google Scholar 

  21. Corsini MT, Lovari S, Sonnino S (1995) Temporal activity patterns of crested porcupines Hystrix cristata. J Zool (Lond) 236:43–54

    Article  Google Scholar 

  22. Cuzin F (2003) Les grands mammifères du Maroc méridional (Haut Atlas, Anti Atlas et Sahara): Distribution, Ecologie et Conservation. Ph.D. Thesis, Laboratoire de Biogéographie et Ecologie des Vertèbrés, Ecole Pratique des Hautes Etudes, Université Montpellier II, Montpellier, France

  23. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettman F, Leathwick JR, Lehmann A, Li J, Lohmann L, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips S, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams SE, Wisz M, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecogr 29:129–151

    Article  Google Scholar 

  24. Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. Plos ONE 9:1–13

    Article  Google Scholar 

  25. Friedman L (1991) Multivariate additive regression splines. Ann Stat 1:1–67

    Article  Google Scholar 

  26. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232

    Article  Google Scholar 

  27. Gaston KJ (2009) Geographic range limits of the species. Proc R Soc 276:1391–1393

    Article  Google Scholar 

  28. Ghigi A (1917) I mammiferi d’Italia considerati nei loro rapport con l’agricoltura. Nat Milano 8:85–137

    Google Scholar 

  29. Golding N, Golding MN (2014) The package ‘GRaF’. Species distribution modelling using latent Gaussian random fields. Available at https://cran.r-project.org/web/packages/GRaF/GRaF.pdf. Accessed on 27th December 2016

  30. Golding N, Purse BV (2016) Fast and flexible Bayesian species distribution modelling using Gaussian processes. Methods Ecol Evol 7:598–608

    Article  Google Scholar 

  31. Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barančok P, Alonso JLB, Coldea G, Ershbamer B, Calzado MRF, Kazakis G, Krajči J, Larsson P, Mallaun M, Michelsen O, Moiseev D, Molau U, Merzouki A, Nagy L, Nakhutsrishvili G, Pedersen B, Pelino G, Puscas M, Rossi G, Stanisci A, Theurillat JP, Tomaselli M, Villar L, Vittoz P, Vogiatzakis I, Grabherr G (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Chang 2:111–115

    Article  Google Scholar 

  32. Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot 90:537–544

    Article  Google Scholar 

  33. Grano M (2016) An unusual urban refuge for the crested porcupine, Hystrix cristata, (Linnaeus, 1758) (Mammalia Rodentia): the ancient Catacombs of Priscilla in Rome (Italy). Biodiv J 7:345–346

    Google Scholar 

  34. Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AIT, Regan TJ, Brotons L, McDonald-Madden E, Mantyka-Pringle C, Martin TG, Rhodes JR, Maggini R, Setterfield SA, Elith J, Schwartz MW, Wintle BA, Broennimann O, Austin M, Ferrier S, Kearney MR, Possingham HP, Buckley YM (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435

    Article  Google Scholar 

  35. Hastie TJ, Tibshirani R (1990) Generalized additive models. Chapman and Hall, London

    Google Scholar 

  36. Hastie T, Tibshirani R, Buja A (1994) Flexible discriminant analysis by optimal scoring. J Am Stat Assoc 89:1255–1270

    Article  Google Scholar 

  37. Huey R, Gilchrist GW, Carlsen M (2000) Rapid evolution of a latitudinal cline in body size of an introduced fly. Science 287:308–309

    Article  Google Scholar 

  38. Hulme PE (2017) Climate change and biological invasions: evidence, expectations, and response options. Biol Rev 92:1297–1313

    Article  Google Scholar 

  39. Ihlow F, Courant J, Secondi J, Herrel A, Rebelo R, Measey GJ, Lillo F, De Villiers FA, Vogt S, De Busschere C, Backeljau T, Rödder D (2016) Impacts of climate change on the global invasion potential of the African clawed frog Xenopus laevis. PLoS One 11:e0154869

    Article  Google Scholar 

  40. Klein G, Vitasse Y, Rixen C, Marty C, Rebetez M (2016) Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset. Clim Chang 139:637–649

    Article  Google Scholar 

  41. Laurenzi A, Bodino N, Mori E (2016) Much ado about nothing: assessing the impact of a problematic rodent on agriculture and native trees. Mamm Res 61:65–72

    Article  Google Scholar 

  42. Levinsky I, Skov F, Svenning JC, Rahbek C (2007) Potential impacts of climate change on the distributions and diversity of European mammals. Biodivers Conserv 16:3803–3816

    Article  Google Scholar 

  43. Lovari S, Corsini MT, Guazzini B, Romeo G, Mori E (2017) Suburban ecology of the crested porcupine in a heavily poached area: a global approach. Eur J Wildl Res 63:10

    Article  Google Scholar 

  44. Luna A, Franz D, Strubbe D, Shwartz A, Braun MP, Hernàndez-Brito D, Malihi Y, Kaplan A, Mori E, Menchetti M, van Turnhout CAM, Parrott D, Chmielewski FM, Edelaar P (2017) Reproductive timing as a constraint on invasion success in the ring-necked parakeet (Psittacula krameri). Biol Invasions 19:2247–2259

    Article  Google Scholar 

  45. Mancino G, Nolè A, Ripullone F, Ferrara A (2014) Landsat TM imagery and NDVI differencing to detect vegetation change: assessing natural forest expansion in Basilicata, southern Italy. iForest 7:75–84

    Article  Google Scholar 

  46. Mason TH, Stephens PA, Apollonio M, Willis SG (2014) Predicting potential responses to future climate in an alpine ungulate: interspecific interactions exceed climate effects. Glob Chang Biol 20:3872–3882

    Article  Google Scholar 

  47. Masseti M, Albarella U, De Grossi MJ (2010) The crested porcupine, Hystrix cristata L., 1758, in Italy. Anthropozoologica 45:27–42

    Article  Google Scholar 

  48. Massolo A (2000) Ecologia comportamentale dell’istrice Hystrix cristata L., 1758, in un’area costiera del Mediterraneo. Ph.D. Dissertation in Biologia Animale (Zoologia), Università degli Studi di Siena, Siena, Italy

  49. Mathewson PD, Moyer-Horner L, Beever EA, Briscoe NJ, Kearney M, Yahn JM, Porter WP (2017) Mechanistic variables can enhance predictive models of endotherm distributions: the American pika under current, past, and future climates. Glob Chang Biol 23:1048–1064

    Article  Google Scholar 

  50. McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall, London

    Google Scholar 

  51. McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260

    Article  Google Scholar 

  52. Milanesi P, Holderegger R, Caniglia R, Fabbri E, Randi E (2015) Different habitat suitability models yield different least-cost path distances for landscape genetic analysis. Basic Appl Ecol 17:61–71

    Article  Google Scholar 

  53. Milanesi P, Breiner F, Puopolo F, Holderegger R (2016a) European human-dominated landscapes provide ample space for the recolonization of large carnivore populations under future land change scenarios. Ecography 40:1359–1368

    Article  Google Scholar 

  54. Milanesi P, Holderegger R, Caniglia R, Fabbri E, Galaverni M, Randi E (2016b) Expert-based versus habitat-suitability models to develop resistance surfaces in landscape genetics. Oecologia 183:67–79

    Article  Google Scholar 

  55. Mohr E (1965) Altweltliche Stachelschweine. Ziemsen Verlag Publisher, Wittenburg Lutherstadt, Germany

  56. Monetti L, Massolo A, Sforzi A, Lovari S (2005) Site selection and fidelity by crested porcupines for denning. Ethol Ecol Evol 17:149–159

    Article  Google Scholar 

  57. Mori E (2017) Porcupines in the landscape of fear: effect of hunting with dogs on the behaviour of a non-target species. Mamm Res 62:251–258

    Article  Google Scholar 

  58. Mori E, Bertolino S (2015) Feeding ecology of long-eared owls in winter: an urban perspective. Bird Study 62:257–261

    Article  Google Scholar 

  59. Mori E, Lovari S (2014) Sexual size monomorphism in the crested porcupine (Hystrix cristata). Mamm Biol 79:157–160

    Article  Google Scholar 

  60. Mori E, Plebani M (2012) First records of Moorish gecko Tarentola mauritanica and Turkish gecko Hemidactylus turcicus (Squamata, Gekkonidae) in the Southern Metalliferous Hills, Tuscany, Italy. Atti Soc Tosc Sci Nat 119:51–54

    Google Scholar 

  61. Mori E, Sforzi A, Di Febbraro M (2013) From the Apennines to the Alps: recent range expansion of the crested porcupine Hystrix cristata L., 1758 (Mammalia: Rodentia: Hystricidae) in Italy. Ital J Zool 80:469–480

    Article  Google Scholar 

  62. Mori E, Lovari S, Sforzi A, Romeo G, Pisani C, Massolo A, Fattorini L (2014a) Patterns of spatial overlap in a monogamous large rodent, the crested porcupine. Behav Proc 107:112–118

    Article  Google Scholar 

  63. Mori E, Nourisson DH, Lovari S, Romeo G, Sforzi A (2014b) Self-defence may not be enough: moonlight avoidance in a large, spiny rodent. J Zool (Lond) 294:31–40

    Article  Google Scholar 

  64. Mori E, Mazza G, Menchetti M, Panzeri M, Gager Y, Bertolino S, Di Febbraro M (2015a) The masked invader strikes again: the conquest of Italy by the Northern raccoon. Hystrix 26:47–51

    Google Scholar 

  65. Mori E, Sforzi A, Menchetti M, Mazza G, Lovari S, Pisanu B (2015b) Ectoparasite load in the crested porcupine Hystrix cristata Linnaeus, 1758 in Central Italy. Parasitol Res 114:2223–2229

    Article  Google Scholar 

  66. Mori E, Menchetti M, Lucherini M, Sforzi A, Lovari S (2016) Timing of reproduction and paternal cares in the crested porcupine. Mamm Biol 81:345–349

    Article  Google Scholar 

  67. Mori E, Baeri A, Sforzi A, Vitale A, Galimberti A (2017) From accidental citizen-science observations to genetic confirmation: how to spot new hidden invaders. Hystrix 28:284–287

    Google Scholar 

  68. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747

    Article  Google Scholar 

  69. Orsomando E, Pedrotti F (1976) Notizie sulla presenza dell’istrice nelle Marche e nell’Umbria. In: Pedrotti F (ed) SOS Fauna, Animali in pericolo in Italia. WWF Report, Camerino, pp 249–263

    Google Scholar 

  70. Pandolfi M (1976) Modificazioni recenti dell’areale di Hystrix cristata Linnaeus, 1758, nell’Italia Centrale Adriatica. Hystrix 1:69–76

    Google Scholar 

  71. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  72. Parmesan C, Matthews J (2006) Biological impacts of climate change. In: Groom MJ, Meffe GK, Carroll CR (eds) Principles of conservation biology. Sinauer Associates, Inc., Sunderland, pp 333–374

    Google Scholar 

  73. Pasinelli G, Grendelmeier A, Gerber M, Arlettaz R (2016) Rodent-avoidance, topography and forest structure shape territory selection of a forest bird. BMC Ecol 16:1

    Article  Google Scholar 

  74. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  75. Piussi P (2000) Expansion of European mountain forests. In: Price MF, Butt N (eds) Forests in sustainable mountain development: a state of knowledge report for 2000. Task Force on Forests in Sustainable Mountain Development. Cabi Editors, London, UK, pp 19–28

  76. Ripley BD (2007) Pattern recognition and neural networks. Cambridge University Press, Cambridge

    Google Scholar 

  77. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  Google Scholar 

  78. Rosenzweig C (2007) Impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palut JP. van der Linden PJ, Hanson CE (eds) Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 79–131

  79. Roth T, Plattner M, Amrhein V (2014) Plants, birds and butterflies: short-term responses of species communities to climate warming vary by taxon and with altitude. Plos ONE e82490

  80. Rowe KC, Rowe KM, Tingley MW, Koo MS, Patton JL, Conroy CJ, Perrine JD, Bessinger SR, Moritz C (2015) Spatially heterogeneous impact of climate change on small mammals of montane California. Proc R Soc Lond 282:20141857

    Article  Google Scholar 

  81. Roze U (2009) The North American porcupine. Cornell University Press, Ithaca

    Google Scholar 

  82. Sexton JP, McIntyre PJ, Angert AL, Rice KJ (2009) Evolution and ecology of species range limits. Annu Rev Ecol Evol Syst 40:415–436

    Article  Google Scholar 

  83. Sillett TS, Holmes RT, Sherry TW (2000) Impacts of a global climate cycle on population dynamics of a migratory songbird. Science 288:2040–2042

    Article  Google Scholar 

  84. Sonnino S (1998) Spatial activity and habitat use of crested porcupine, Hystrix cristata L., 1758 (Rodentia, Hystricidae) in central Italy. Mammalia 62:175–189

    Article  Google Scholar 

  85. Spada A, Bon M, Latella L, Salmaso R (2008) Primi indizi di riproduzione di istrice, Hystrix cristata, in Veneto (Rodentia: Hystricidae). Atti del V Convegno dei Faunisti Veneti, 12–13 May 2007, Legnaro (PD), pp 323–327

  86. Stolar J, Nielsen SE (2014) Accounting for spatially biased sampling effort in presence-only species distribution modelling. Divers Distrib 21:595–608

    Article  Google Scholar 

  87. Su S, Cassey P, Dyer EE, Blackburn TM (2017) Geographical range expansion of alien birds and environmental matching. Ibis 159:193–203

    Article  Google Scholar 

  88. Svenning JC, Normand S, Skov F (2008) Postglacial dispersal limitation of widespread forest plant species in nemoral Europe. Ecography 31:316–326

    Article  Google Scholar 

  89. Thomas CD (2010) Climate, climate change and range boundaries. Divers Distrib 16:488–495

    Article  Google Scholar 

  90. Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD: a platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Article  Google Scholar 

  91. Thuiller W, Georges D, Engler R, Breiner F, Georges MD, Thuiller CW (2016) Package ‘biomod2’. Available at: https://cran.r-project.org/web/packages/biomod2/biomod2.pdf . Accessed on 27th December 2016

  92. Tomei PE, Cavalli S (1976) L’areale dell’istrice a nord dell’Arno. Atti Soc Tosc Sci Nat 83:42–48

    Google Scholar 

  93. Trucchi E, Sbordoni V (2009) Unveiling an ancient biological invasion: molecular analysis of an old European alien, the crested porcupine (Hystrix cristata). BMC Evol Biol 9:109

    Article  Google Scholar 

  94. Trucchi E, Facon B, Gratton P, Mori E, Stenseth NC, Jentoft S (2016) Long live the alien: is high genetic diversity a pivotal aspect of crested porcupine (Hystrix cristata) long-lasting and successful invasion? Mol Ecol 25:3527–3539

    Article  Google Scholar 

  95. Urban MC (2015) Accelerating extinction risk from climate change. Science 348:571–573

    Article  Google Scholar 

  96. Veech JA, Small MF, Baccus JT (2011) The effect of habitat on the range expansion of a native and an introduced bird species. J Biogeogr 38:69–77

    Article  Google Scholar 

  97. Viviani F, Trucchi E (2007) La popolazione di istrice (Hystrix cristata L.) delle Alpi Apuane: analisi preliminari su distribuzione e caratterizzazione genetica. Acta Apuana 7:1–4

    Google Scholar 

  98. Walther GR, Beissner S, Burga CA (2005) Trends in the upward shift of alpine plants. J Veg Sci 16:541–548

    Article  Google Scholar 

  99. Wilson RJ, Gutierrez D (2012) Effects of climate change on the elevational limits of species ranges. In: Beever EA, Belant JL (eds) Ecological consequences of climate change: mechanisms, conservation, and management. CRC Press, Taylor and Francis group, Boca Raton, pp 107–132

    Google Scholar 

  100. Wilson RJ, Gutierrez D, Gutierrez J, Martìnez D, Agudo R, Montserrat VJ (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett 8:1138–1146

    Article  Google Scholar 

  101. Woodward FI (1987) Climate and plant distribution. Cambridge University Press, Cambridge

    Google Scholar 

  102. Zeeman MJ, Mauder M, Steinbrecher R, Heidbach K, Eckart E, Schmid HP (2017) Reduced snow cover affects productivity of upland temperate grasslands. Agric For Meteorol 232:514–526

    Article  Google Scholar 

  103. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Vasco Sfondrini who took the time to revise the first version of our manuscript, Dylan Bell and Kelsey Horvath for improving the English grammar and syntax. Three anonymous reviewers and Dr. Erik Beever improved the first version of this manuscript with useful comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emiliano Mori.

Electronic supplementary material

Table S1

(DOCX 13 kb)

ESM 1

(DOCX 36 kb)

Fig. S1

(DOCX 503 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mori, E., Sforzi, A., Bogliani, G. et al. Range expansion and redefinition of a crop-raiding rodent associated with global warming and temperature increase. Climatic Change 150, 319–331 (2018). https://doi.org/10.1007/s10584-018-2261-8

Download citation

Keywords

  • Climate change
  • Hystrix cristata
  • Italian peninsula
  • Management practices
  • Range redefinition