Advertisement

Climatic Change

, Volume 149, Issue 3–4, pp 367–383 | Cite as

Behind the veil of extreme event attribution

  • Aglaé JézéquelEmail author
  • Vivian Dépoues
  • Hélène Guillemot
  • Mélodie Trolliet
  • Jean-Paul Vanderlinden
  • Pascal Yiou
Article

Abstract

Since Allen (Nature 421(6926):891–892, 2003)’s seminal article, the community of extreme event attribution (EEA) has grown to maturity. Several approaches have been developed: the main ones are the “risk-based approach” — estimating how the probability of event occurrence correlates with climate change — and the “storyline approach” — evaluating the influence of climate change on thermodynamic processes leading to the event. In this article, we map the ways to frame attribution used in a collection of 105 case studies from five BAMS (Bulletin of American Meteorological Society) special issues on extreme events. In order to do so, we propose to define EEA, based on two corpora of interviews conducted with researchers working in the field, as follows: EEA is the ensemble of scientific ways to interpret the question “was this event influenced by climate change?” and answer it. In order to break down the subtleties of EEA, we decompose this initial question into three main problems a researcher has to deal with when framing an EEA case study. First, one needs to define the event of interest. Then, one has to propose a way to link the extreme event with climate change, and the subsequent level of conditioning to parameters of interest. Finally, one has to determine how to represent climate change. We provide a complete classification of BAMS case studies according to those three problems.

Notes

Acknowledgments

We thank Dáithí Stone and three anonymous reviewers for their helpful comments.

Funding information

This work was supported by ERC grant No. 338965-A2C2 and the European Union’s Seventh Framework Programme grant No. 607085-EUCLEIA.

Supplementary material

10584_2018_2252_MOESM1_ESM.pdf (51 kb)
(PDF 51.4 KB)
10584_2018_2252_MOESM2_ESM.pdf (48 kb)
(PDF 48.0 KB)
10584_2018_2252_MOESM3_ESM.pdf (73 kb)
(PDF 73.2 KB)
10584_2018_2252_MOESM4_ESM.pdf (84 kb)
(PDF 83.6 KB)
10584_2018_2252_MOESM5_ESM.pdf (68 kb)
(PDF 68.4 KB)

References

  1. Allen M (2003) Liability for climate change. Nature 421(6926):891–892.  https://doi.org/10.1038/421891a CrossRefGoogle Scholar
  2. Allen M (2011) In defense of the traditional null hypothesis: remarks on the trenberth and curry wires opinion articles. Wiley Interdiscip Rev Clim Chang 2(6):931–934.  https://doi.org/10.1002/wcc.145 CrossRefGoogle Scholar
  3. Angélil O, Stone D, Wehner M, Paciorek CJ, Krishnan H, Collins W (2017) An independent assessment of anthropogenic attribution statements for recent extreme temperature and rainfall events. J Clim 30(1):5–16.  https://doi.org/10.1175/JCLI-D-16-0077.1 CrossRefGoogle Scholar
  4. Arblaster JM, Lim E -P, Hendon HH, Trewin BC, Wheeler MC, Liu G, Braganza K (2014) Understanding Australia’s hottest September on record [in “Explaining Extreme Events of 2014 from a Climate Perspective”]. Bull Am Meteorol Soc 95(9):S37–S41Google Scholar
  5. Barlow A, Mathew Hoell (2015) Drought in the Middle East and Central Southwest Asia during winter 2013/14 [in “Explaining Extreme Events of 2014 from a Climate Perspective”]. Bull Am Meteorol Soc 96(12):S71–S76CrossRefGoogle Scholar
  6. Barnes EA (2013) Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys Res Lett 40(17):4734–4739.  https://doi.org/10.1002/grl.50880 CrossRefGoogle Scholar
  7. Bergaoui K, Mitchell D, Zaaboul R, McDonnell R, Otto F, Allen M (2015) The contribution of human-induced climate change to the drought of 2014 in the Southern Levant region [in “Explaining Extreme Events of 2014 from a Climate, Perspective”]. Bull Am Meteorol Soc 96(12):S66–S70CrossRefGoogle Scholar
  8. Black MT, Karoly DJ, King AD (2015) The contribution of anthropogenic forcing to the Adelaide and Melbourne, Australia, heat waves of January 2014 [in “Explaining Extreme Events of 2014 from a Climate Perspective”]. Bull Am Meteorol Soc 96 (12):S118–S121CrossRefGoogle Scholar
  9. Cattiaux J, Ribes A (2018) Defining single extreme weather events in a climate perspective. Bull Amer Meteor Soc, In Press.  https://doi.org/10.1175/BAMS-D-17-0281.1
  10. Cattiaux J, Vautard R, Cassou C, Yiou P, Masson-Delmotte V, Codron F (2010) Winter 2010 in Europe A cold extreme in a warming climate. Geophys Res Lett 37(20):1–6.  https://doi.org/10.1029/2010GL044613 CrossRefGoogle Scholar
  11. Christidis N, Stott PA, Scaife AA, Arribas A, Jones GS, Copsey D, Knight JR, Tennant WJ (2013) A new hadgem3-a-based system for attribution of weather- and climate-related extreme events. J Clim 26(9):2756–2783.  https://doi.org/10.1175/JCLI-D-12-00169.1 CrossRefGoogle Scholar
  12. Christidis N, Stott PA, Zwiers FW (2015) Fast-track attribution assessments based on pre-computed estimates of changes in the odds of warm extremes, vol 45Google Scholar
  13. (2016) Committee on Extreme Weather Events and Climate Change Attribution (NAS2016). Attribution of extreme weather events in the context of climate change,  https://doi.org/10.17226/21852
  14. Curry J (2011) Nullifying the climate null hypothesis. Wiley Interdiscip Rev Clim Chang 2(6):919–924.  https://doi.org/10.1002/wcc.141 CrossRefGoogle Scholar
  15. De Vries H, Van Westrhenen R, Van Oldenborgh GJ (2012) The European cold spell that didn’t bring the dutch another 11-city tour [in “Explaining Extreme Events of 2012 from a Climate Perspective”]. Bull Am Meteorol Soc 94(9):S26–S28Google Scholar
  16. Dole R, Hoerling M, Perlwitz J, Eischeid J, Pegion P, Zhang T, Quan XW, Xu T, Murray D (2011) Was there a basis for anticipating the 2010 Russian heat wave? Geophysical Research Letters 38(6):1–5.  https://doi.org/10.1029/2010GL046582 CrossRefGoogle Scholar
  17. Dong B, Sutton RT, Shaffrey L, Klingaman NP (2017) Attribution of forced decadal climate change in coupled and uncoupled Ocean—atmosphere model experiments. J Clim 30(16):6203–6223.  https://doi.org/10.1175/JCLI-D-16-0578.1 CrossRefGoogle Scholar
  18. Feser F, Barcikowska M, Haeseler S, Lefebvre C, Schubert-Frisius M, Stendel M, von Storch H, Zahn M (2015) Hurricane Gonzalo and its extratropical transition to a strong European storm [in “Explaining Extreme Events of 2014 from a Climate Perspective”]. Bull Am Meteorol Soc 96(12):S51–S55CrossRefGoogle Scholar
  19. Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39:1–6.  https://doi.org/10.1029/2012GL051000 CrossRefGoogle Scholar
  20. Fučkar NS, Massonnet F, Guemas V, García-Serrano J, Bellprat O, Doblas-Reyes FJ, AM (2016) Record-low Northern Hemisphere sea ice extent in March 2015 [in “Explaining Extreme Events of 2015 from a Climate Perspective”]. Bull Am Meteorol Soc 97(12):S136–S140CrossRefGoogle Scholar
  21. Funk C (2012) Exceptional warming in the Western Pacific-Indian ocean warm pool has contributed to more frequent droughts in Eastern Africa [in “Explaining Extreme Events of 2011 from a Climate Perspective”]. Bull Am Meteorol Soc 93(7):1049–1051Google Scholar
  22. Funk C, Hoell A, Stone D (2014) Examining the contribution of the observed global warming trend to the California droughts of 2012/13 and 2013/14 [in “Explaining Extreme Events of 2013 from a Climate Perspective”]. Bull Am Meteorol Soc 95 (9):S11–S15Google Scholar
  23. Guemas V, Doblas-Reyes FJ, Germe A, Chevallier M, Salas y Mélia D (2013) September 2012 Arctic sea ice minimum Discriminating between sea ice memory, the August 2012 extreme storm, and prevailing warm conditions [in “Explaining Extreme Events of 2012 from a Climate Perspective”]. Bull Am Meteorol Soc 94(9):S20–S22Google Scholar
  24. Hannart A, Carrassi A, Bocquet M, Ghil M, Naveau P, Pulido M, Ruiz J, Tandeo P (2016) Dada: data assimilation for the detection and attribution of weather and climate-related events. Clim Chang 136(2):155–174.  https://doi.org/10.1007/s10584-016-1595-3 CrossRefGoogle Scholar
  25. Harrington LJ (2017) Investigating differences between event-as-class and probability density-based attribution statements with emerging climate change. Clim Chang 141 (4):641–654.  https://doi.org/10.1007/s10584-017-1906-3 CrossRefGoogle Scholar
  26. Hauser M, Gudmundsson L, Orth R, Jézéquel A, Haustein K, Vautard R, Oldenborgh GJV, Wilcox L, Seneviratne SI (2017) Methods and model dependency of extreme event attribution: The 2015 European droughtGoogle Scholar
  27. Haustein K, Otto FEL, Uhe P, Schaller N (2016) Real-time extreme weather event attribution with forecast seasonal SSTs. Environ Res Lett 11(6):1–15.  https://doi.org/10.1088/1748-9326/11/6/064006 CrossRefGoogle Scholar
  28. Hawkins E, Ortega P, Suckling E, Schurer A, Hegerl G, Jones P, Joshi M, Osborn TJ, Masson-Delmotte V, Mignot J, Thorne P, van Oldenborgh GJ (2017) Estimating changes in global temperature since the preindustrial period. Bull Am Meteorol Soc 98(9):1841–1856.  https://doi.org/10.1175/BAMS-D-16-0007.1 CrossRefGoogle Scholar
  29. Hegerl GC, Hoegh-Guldberg O, Casassa G, Hoerling MP, Kovats R, Parmesan C, Pierce DW, Stott PA (2010) Good practice guidance paper on detection and attribution related to anthropogenic climate change. In: In Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Detection and Attribution of Anthropogenic Climate Change. IPCC Working Group I Technical Support Unit, University of Bern, Bern, SwitzerlandGoogle Scholar
  30. Herring SC, Hoerling MP, Peterson TC, Stott PA (2014) Explaining extreme events of 2013 from a climate perspective. Am Meteorol Soc 95(9):1–96.  https://doi.org/10.1175/1520-0477-95.9.S1.1 CrossRefGoogle Scholar
  31. Herring SC, Hoerling MP, Kossin JP, Peterson TC, E Stott PA (2015) Explaining extreme events of 2014 from a climate perspective. Bull Am Meteorol Soc 96(12):S1–S172Google Scholar
  32. Herring SC, Hoell A, Hoerling MP, Kossin JP, Schreck III CJ, E Stott PA (2016a) Explaining extreme events of 2015 from a climate perspective. Bull Am Meteorol Soc 97(12):S1–S145Google Scholar
  33. Herring SC, Hoerling MP, Kossin JP, Schreck III CJ, Peterson TC, A SP (2016b) Introduction to explaining extreme events of 2015 from a climate perspective. Bull Am Meteorol Soc 97(12):S1–S4Google Scholar
  34. Herring SC, Christidis N, Hoell A, Kossin JP, Schreck III CJ, E Stott PA (2018) Explaining extreme events of 2016 from a climate perspective. Bull Am Meteorol Soc 99:S1–S157Google Scholar
  35. Hoerling M, Kumar A, Dole R, Nielsen-Gammon JW, Eischeid J, Perlwitz J, Quan XW, Zhang T, Pegion P, Chen M (2013) Anatomy of an extreme event. J Clim 26(9):2811–2832.  https://doi.org/10.1175/JCLI-D-12-00270.1 CrossRefGoogle Scholar
  36. Hope P, Lim E-P, Wang G, Hendon HH, Arblaster JM (2015) Contributors to the record high temperatures across Australia in late spring 2014 [in “Explaining Extreme Events of 2014 from a Climate Perspective”]. Bull Am Meteorol Soc 96(12):S149–S153CrossRefGoogle Scholar
  37. Huggel C, Wallimann-Helmer I, Stone D, Cramer W (2016) Reconciling justice and attribution research to advance climate policy. Nat Chem Biol 6(10):901–908.  https://doi.org/10.1038/nclimate3104 Google Scholar
  38. Hulme M (2014) Attributing weather extremes to ’climate change’: a review. Progress in Physical Geography: Earth and Environment 38 (4):499–511.  https://doi.org/10.1177/0309133314538644 CrossRefGoogle Scholar
  39. James R, Otto F, Parker H, Boyd E, Cornforth R, Mitchell D, Allen M (2014) Characterizing loss and damage from climate change. Nat Clim Chang 4 (11):938–939.  https://doi.org/10.1038/nclimate2411 CrossRefGoogle Scholar
  40. King AD, Lewis SC, Perkins SE, Alexander LV, Donat MG, Karoly DJ, Black MT (2013) Limited evidence of anthropogenic influence on the 2011–2012 extreme rainfall over Southeast Australia [in ”Explaining Extreme Events of 2012 from a ClimatePerspective”]. Bull Am Meteorol Soc 94(9):S55–S58Google Scholar
  41. King AD, Black MT, Karoly DJ, Donat MG (2015) Increased likelihood of Brisbane Australia G20 heat event due to anthropogenic climate change [in ”Explaining Extreme Events of 2014 from a Climate Perspective”]. Bull Am Meteorol Soc 96 (12):S141–S144CrossRefGoogle Scholar
  42. Knutson TR, Zeng F, W andrew T (2013a) The extreme March-May 2012 warm anomaly over the Eastern United States: global context and multimodel trend analysis [in ”Explaining Extreme Events of 2012 from a Climate Perspective”]. Bull Am Meteorol Soc 94(9):S13–S17Google Scholar
  43. Knutson TR, Zeng F, Wittenberg AT (2013b) Multimodel assessment of regional surface temperature trends: CMIP3 and CMIP5 twentieth-century simulations. J Clim 26(22):8709–8743.  https://doi.org/10.1175/JCLI-D-12-00567.1
  44. Lewis SC, Karoly DJ (2013) Anthropogenic contributions to Australia’s record summer temperatures of 2013. Geophys Res Lett 40(14):3705–3709.  https://doi.org/10.1002/grl.50673 CrossRefGoogle Scholar
  45. Lewis SC, Karoly DJ (2014) The role of anthropogenic forcing in the record 2013 Australia-wide annual and spring temperatures [in ”Explaining Extreme Events of 2013 from a Climate Perspective”]. Bull Am Meteorol Soc 95(9):S31–S34Google Scholar
  46. Mann ME, Lloyd EA, Oreskes N (2017) Assessing climate change impacts on extreme weather events: the case for an alternative (Bayesian) approach. Clim Chang 144(2):131–142.  https://doi.org/10.1007/s10584-017-2048-3 CrossRefGoogle Scholar
  47. Massey N, Jones R, Otto FEL, Aina T, Wilson S, Murphy JM, Hassell D, Yamazaki YH, Allen MR (2015) weather@home—development and validation of a very large ensemble modelling system for probabilistic event attribution. Q J R Meteorol Soc 141(690):1528–1545.  https://doi.org/10.1002/qj.2455 CrossRefGoogle Scholar
  48. Massonnet F, Guemas V, Fukar NS, Doblas-Reyes FJ (2015) The 2014 high record of Antarctic sea ice extent [in ”Explaining Extreme Events of 2014 from a Climate Perspective”]. Bull Am Meteorol Soc 96(12):S163–S167CrossRefGoogle Scholar
  49. Meredith EP, Semenov VA, Maraun D, Park W, Chernokulsky AV (2015) Crucial role of Black Sea warming in amplifying the Krymsk precipitation extreme. Nature Geoscience 8:615–619.  https://doi.org/10.1038/NGEO2483
  50. Miao C, Sun Q, Kong D, Duan Q (2016) Record-breaking heat in Northwest China in July 2015: analysis of the severity and underlying causes [in “Explaining Extreme Events of 2015 from a Climate Perspective”]. Bull Am Meteorol Soc 97(12):S97–S101CrossRefGoogle Scholar
  51. Min S-K, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470:378–381.  https://doi.org/10.1038/nature09763
  52. Murakami H, Vecchi GA, Delworth T, Paffendorf K, Gudgel R, Jia L, Zeng F (2015) Investigating the influence of anthropogenic forcing and natural variability on the 2014 Hawaiian hurricane season [in “Explaining Extreme Events of 2014 from a Climate Perspective”]. Bull Am Meteorol Soc 96(12):S115–S119CrossRefGoogle Scholar
  53. Otto FE (2017) Attribution of weather and climate events. Annu Rev Environ Resour 42(1):627–646.  https://doi.org/10.1146/annurev-environ-102016-060847 CrossRefGoogle Scholar
  54. Otto FEL, Massey N, Oldenborgh GJV, Jones RG, Allen MR (2012) Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophys Res Lett 39:1–5.  https://doi.org/10.1029/2011GL050422 CrossRefGoogle Scholar
  55. Otto FEL, van Oldenborgh GJ, Eden J, Stott PA, Karoly DJ, Allen MR (2016) The attribution question. Nat Clim Chang 6(9):813–816.  https://doi.org/10.1038/nclimate3089 CrossRefGoogle Scholar
  56. Ouzeau G, Soubeyroux J-M, Schneider M, Vautard R, Planton S (2016) Heat waves analysis over France in present and future climate: application of a new method on the EURO-CORDEX ensemble. Climate Services 4(Supplement C):1–12.  https://doi.org/10.1016/j.cliser.2016.09.002 CrossRefGoogle Scholar
  57. Pall P, Aina T, Stone DA, Stott PA, Nozawa T, Hilberts AGJ, Lohmann D, Allen MR (2011) Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470(7334):382–385.  https://doi.org/10.1038/Nature09762 CrossRefGoogle Scholar
  58. Pall P, Patricola CM, Wehner MF, Stone DA, Paciorek CJ, Collins WD (2017) Diagnosing conditional anthropogenic contributions to heavy Colorado rainfall in September 2013. Weather Climate Extremes 17:1–6.  https://doi.org/10.1016/j.wace.2017.03.004 CrossRefGoogle Scholar
  59. Parker HR, Boyd E, Cornforth RJ, James R, Otto FEL, Allen MR (2017) Stakeholder perceptions of event attribution in the loss and damage debate. Clim Pol 17(4):533–550.  https://doi.org/10.1080/14693062.2015.1124750 CrossRefGoogle Scholar
  60. Perlwitz J, Hoerling M, Eischeid J, Xu T, Kumar A (2009) A strong bout of natural cooling in 2008. Geophys Res Lett 36(23):L23706.  https://doi.org/10.1029/2009GL041188
  61. Peterson TC, Stott PA, Herring S, Zwiers FW, Hegerl GC, Min SK, Zhang XB, van Oldenborgh GJ, van Urk A, Allen MR, Funk C, Rupp DE, Mote PW, Massey N, Rye CJ, Jones R, Cattiaux J, Yiou P, Massey N, Aina T, Otto FEL, Wilson S, Jones RG, Christidis N (2012) Explaining extreme events of 2011 from a climate perspective. Bull Am Meteorol Soc 93(7):1041–1067.  https://doi.org/10.1175/Bams-D-12-00021.1 CrossRefGoogle Scholar
  62. Peterson TC, Hoerling MP, Stott PA, E Herring S (2013) Explaining extreme events of 2012 from a climate perspective. Bull Am Meteorol Soc 94(9):S1–S74CrossRefGoogle Scholar
  63. Rahmstorf S, Coumou D (2011) Increase of extreme events in a warming world. Proc Natl Acad Sci USA 108(44):17905–17909.  https://doi.org/10.1073/pnas.1101766108 CrossRefGoogle Scholar
  64. Risser MD, Stone DA, Paciorek CJ, Wehner MF, Angélil O (2017) Quantifying the effect of interannual ocean variability on the attribution of extreme climate events to human influence. Climate Dyn 49(9):3051–3073.  https://doi.org/10.1007/s00382-016-3492-x CrossRefGoogle Scholar
  65. Schaller N, Otto FEL, van Oldenborgh GJ, Massey NR, Sparrow S, Allen MR (2014) The heavy precipitation event of May–June 2013 in the upper Danube and Elbe basins [in “Explaining Extreme Events of 2014 from a Climate Perspective”]. Bull Am Meteorol Soc 95(9):S69–S72Google Scholar
  66. Schaller N, Kay AL, Lamb R, Massey NR, Van Oldenborgh GJ, Otto FE, Sparrow SN, Vautard R, Yiou P, Ashpole I et al (2016) Human influence on climate in the 2014 Southern England winter floods and their impacts. Nat Clim Chang 6(6):627.  https://doi.org/10.1038/nclimate2927 CrossRefGoogle Scholar
  67. Schwab M, Meinke I, Vanderlinden J-P, von Storch H (2017) Regional decision-makers as potential users of extreme weather event attribution — case studies from the German Baltic Sea coast and the Greater Paris area. Weather Climate Extremes 18:1–7.  https://doi.org/10.1016/j.wace.2017.09.001
  68. Shepherd TG (2016) A common framework for approaches to extreme event attribution. Current Climate Change Reports 2(1):28–38.  https://doi.org/10.1007/s40641-016-0033-y CrossRefGoogle Scholar
  69. Sippel S, Walton P, Otto FEL (2015) Stakeholder perspectives on the attribution of extreme weather events: n explorative enquiry. Weather Climate Soc 7(3):224–237.  https://doi.org/10.1175/WCAS-D-14-00045.1 CrossRefGoogle Scholar
  70. Sippel S, Otto FEL, Flach M, van Oldenborgh GJ (2016) The role of anthropogenic warming in 2015 central European heat waves [in “Explaining Extreme Events of 2015 from a Climate Perspective”]. Bull Am Meteorol Soc 97(12):S51–S56CrossRefGoogle Scholar
  71. Siswanto GJ, van Oldenborgh GJ, van der Schier G, Lenderink G, van den Hurk B (2015) Trends in high-daily precipitation events in Jakarta and the flooding of January 2014 [in “Explaining Extreme Events of 2014 from a Climate Perspective”]. Bull Am Meteorol Soc 96(12):S131–S135CrossRefGoogle Scholar
  72. Stott PA, Walton P (2013) Attribution of climate-related events: understanding stakeholder needs. Weather 68(10):274–279.  https://doi.org/10.1002/wea.2141 CrossRefGoogle Scholar
  73. Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432(7017):610–614.  https://doi.org/10.1038/Nature03089 CrossRefGoogle Scholar
  74. Stott PA, Christidis N, Otto FEL, Sun Y, Vanderlinden J-P, van Oldenborgh GJ, Vautard R, von Storch H, Walton P, Yiou P, Zwiers FW (2016) Attribution of extreme weather and climate-related events. Wiley Interdiscip Rev Clim Chang 7(1):23–41.  https://doi.org/10.1002/wcc.380 CrossRefGoogle Scholar
  75. Stott PA, Karoly DJ, Zwiers FW (2017) Is the choice of statistical paradigm critical in extreme event attribution studies? Clim Chang 144(2):143–150.  https://doi.org/10.1007/s10584-017-2049-2 CrossRefGoogle Scholar
  76. Sun Y, Zhang X, Zwiers FW, Song L, Wan H, Hu T, Yin H, Ren G (2014) Rapid increase in the risk of extreme summer heat in eastern China, Nature Climate Change.  https://doi.org/10.1038/nclimate2410
  77. Swain DL, Tsiang M, Haugen M, Singh D, Charland A, Rajaratnam B, Diffenbaugh NS (2014) The extraordinary California drought of 2013/2014 Character, context and the role of climate change [in “Explaining Extreme Events of 2013 from a Climate Perspective”]. Bull Am Meteorol Soc 95(9):S3–S7Google Scholar
  78. Sweet W, Zervas C, Gill S, Park J (2013) Hurricane Sandy inundation probabilities today and tomorrow [in “Explaining Extreme Events of 2012 from a Climate Perspective”]. Bull Am Meteorol Soc 94(9):S17–S20Google Scholar
  79. Trenberth KE, Fasullo JT, Shepherd TG (2015) Attribution of climate extreme events. Nat Clim Chang 5(8):725–730.  https://doi.org/10.1038/nclimate2657 CrossRefGoogle Scholar
  80. Van Oldenborgh GJ, van Urk A, Allen M (2012) The absence of a role of climate change in the 2011 Thailand floods [in ”Explaining Extreme Events of 2011 from a Climate Perspective”]. Bull Am Meteorol Soc 93(7):1047–1049Google Scholar
  81. Vautard R, Yiou P, Otto FEL, Stott P, Christidis N, van Oldenborgh GJ, Schaller N (2016) Attribution of human-induced dynamical and thermodynamical contributions in extreme weather events. Environ Res Lett 11 (11):114009.  https://doi.org/10.1088/1748-9326/11/11/114009 CrossRefGoogle Scholar
  82. Von Storch H, Feser F, Haeseler S, Lefebvre C, Stendel M (2014) A violent midlatitude storm in Northern Germany and Denmark, 28 October 2013 [in ”Explaining Extreme Events of 2013 from a Climate Perspective”]. Bull Am Meteorol Soc 95(9):S76–S78Google Scholar
  83. Wang H, Schubert S (2014) Causes of the extreme dry conditions over California during early 2013 [in ”Explaining Extreme Events of 2013 from a Climate Perspective”]. Bulletin of the American Meteorological Society 95(9):S7–S11Google Scholar
  84. Wilcox LJ, Dong B, Sutton RT, Highwood EJ (2015) The 2014 hot, dry summer in Northeast Asia [in ”Explaining Extreme Events of 2014 from a Climate Perspective”]. Bull Am Meteorol Soc 96(12):S105–S110CrossRefGoogle Scholar
  85. Wilcox LJ, Yiou P, Hauser M, Lott FC, van Oldenborgh GJ, Colfescu I, Dong B, Hegerl G, Shaffrey L, Sutton R (2017) Multiple perspectives on the attribution of the extreme European summer of 2012 to climate changeGoogle Scholar
  86. Wolski P, Stone D, Tadross M, Wehner M, Hewitson B (2014) Attribution of floods in the Okavango basin, Southern Africa. J Hydrol 511:350–358. ISSN 0022-1694,  https://doi.org/10.1016/j.jhydrol.2014.01.055. http://www.sciencedirect.com/science/article/pii/S0022169414000778 CrossRefGoogle Scholar
  87. Yang X, Vecchi GA, Delworth TL, Paffendorf K, Gudgel R, Jia L, Underwoord SD, Zeng F (2015) Extreme North America winter storm season of 2013/14: roles of radiative forcing and the global warming hiatus [in ”Explaining Extreme Events of 2014 from a Climate Perspective”]. Bull Am Meteorol Soc 96(12):S25–S28CrossRefGoogle Scholar
  88. Yiou P, Jézéquel A, Naveau P, Otto FEL, Vautard R, Vrac M (2017) A statistical framework for conditional extreme event attribution. Advances in Statistical Climatology Meteorology and Oceanography 3(1):17–31.  https://doi.org/10.5194/ascmo-3-17-2017 CrossRefGoogle Scholar
  89. Zhang W, Vecchi G, Murakami H, Villarini G, Delworth TL, Paffendorf K, Gudgel R, Jia L, Zeng F, Yang X (2016) Influences of natural variability and anthropogenic forcing on the extreme 2015 accumulated cyclone energy in the Western North Pacific [in ”Explaining Extreme Events of 2015 from a Climate Perspective”]. Bull Am Meteorol Soc 97(12):S131–S135CrossRefGoogle Scholar
  90. Zwiers FW, Zhang X, Feng Y (2011) Anthropogenic influence on long return period daily temperature extremes at regional scales. J Clim 24(3):881–892.  https://doi.org/10.1175/2010JCLI3908.1 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Laboratoire des Sciences du Climat et de l’Environnement, UMR 8212 CEA-CNRS-UVSQ, IPSL & U Paris-SaclayCEA l’Orme des MerisiersGif-sur-YvetteFrance
  2. 2.ADEMEAngersFrance
  3. 3.I4CE Institute for Climate EconomicsParisFrance
  4. 4.CEARCOVSQ University Versailles Saint-Quentin-en-YvelinesGuyancourtFrance
  5. 5.Centre Alexandre Koyré - CNRSParisFrance
  6. 6.PSL Research University, O.I.E. - Center for Observation, Impacts, EnergyMINES ParisTechSophia Antipolis cedexFrance

Personalised recommendations