Advertisement

Climatic Change

, Volume 147, Issue 3–4, pp 457–473 | Cite as

Multi-temporal assessment of vulnerability to climate change: insights from the agricultural sector in Mexico

  • Alejandro Ismael Monterroso-Rivas
  • Ana Cecilia Conde-Álvarez
  • José Luís Pérez-Damian
  • Jorge López-Blanco
  • Marcos Gaytan-Dimas
  • Jesús David Gómez-Díaz
Article

Abstract

Vulnerability to climate change was evaluated for three different time periods: 1990, 2000, and 2010. Our objective was to discuss the scope of a multi-temporal assessment of vulnerability. The method used 55 indicators—with emphasis on the agricultural sector in Mexico—of which 27 were updated for the year 2010 and 33 were retrospectively estimated for the year 1990. The results show that in the 20-year study period, the exposure of the municipalities (and inhabitants) has increased, and sensitivity and adaptive capacity have decreased. The number of municipalities vulnerable to climate change declined over the 20-year period. We found that calculating vulnerability by adding exposure and sensitivity and subtracting adaptive capacity (E + S − AC) can lead to unintentional underestimation of total vulnerability. When rating vulnerability, care must be taken in what is reported: the results differ for the number of inhabitants versus the number of municipalities. Our previous published vulnerability evaluation was for the year 2000, so we wanted to evaluate the sensitivity of some variables and the vulnerability formula itself we used in that moment. It is possible to evaluate the vulnerability multi-temporally, which allows to evaluate the sensibility and calibration of the variables and indicators used and the reconsideration of their application.

Notes

Acknowledgements

We are grateful to the Departamento de Suelos and CIRENAM at the Universidad Autónoma Chapingo; Centro de Ciencias de la Atmosfera at the Universidad Nacional Autónoma de México; and Instituto Nacional de Ecología y Cambio Climático (INECC), where the research was conducted. We gratefully acknowledge the comments and suggestions of the anonymous reviewers whose comments have substantially improved the paper.

Supplementary material

10584_2018_2157_MOESM1_ESM.docx (28 kb)
ESM 1 (DOCX 28 kb)
10584_2018_2157_MOESM2_ESM.xlsx (554 kb)
ESM 2 (XLSX 553 kb)
10584_2018_2157_MOESM3_ESM.docx (1.5 mb)
ESM 3 (DOCX 1508 kb)

References

  1. Aall C, Norland I (2005) Indicators for local-scale climate vulnerability assessments. University of Oslo: Western Norway Research InstituteGoogle Scholar
  2. Asensio C, Lozano F, Ortega E, Kikvidze Z (2015) Study on the effectiveness of an agricultural technique based on aeolian deposition, in a semiarid environment. Environ Eng Manag J 14(5):1143–1150Google Scholar
  3. Banco Mundial (2017) Gasto público en educación, total (% del PIB). Retrieved April 2, 2017, from http://datos.bancomundial.org/indicador/SE.XPD.TOTL.GD.ZS?locations=MX
  4. Beddington JR, Asadazzama M, Clark M, Fernández A, Guillou M, Jahn M, … Wakhungu J (2012) Achieving food security in the face of climate change. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS)Google Scholar
  5. Bouroncle C, Imbach P, Rodríguez-Sánchez B, Medellín C, Martinez-Valle A, Läderach P (2017) Mapping climate change adaptive capacity and vulnerability of smallholder agricultural livelihoods in Central America: ranking and descriptive approaches to support adaptation strategies. Clim Chang 141(1):123–137.  https://doi.org/10.1007/s10584-016-1792-0 CrossRefGoogle Scholar
  6. CDI-INEGI (2006) Indicadores sociodemográficos de la población indígena 2000–2005. Ciudad de México: Comisión Nacional para el Desarrollo de los Pueblos Indígenas. Retrieved from http://www.cdi.gob.mx/
  7. CENAPRED (2014) Inundaciones (1st ed.). Ciudad de México. Retrieved from http://www.cenapred.gob.mx/es/Publicaciones/archivos/3-FASCCULOINUNDACIONES.PDF
  8. CENAPRED (2016) Base de datos sobre declaratorias de emergencia, desastre y contingencia climática de 2000 a 2016. Retrieved from www.atlasnacionalderiesgos.gob.mx/archivo/escargas.html
  9. CONAPO (2012) Índice de marginación por entidad federativa y municipio 2010. (CONAPO, Ed.) (1st ed.). Mexico, DF. Retrieved from www.gob.mx/conapo/
  10. CONEVAL (2014) Evolución de la pobreza por la dimensión de ingreso, 1992–2014. Con base en las ENIGH de 1992 a 2014 y el MCS-ENIGH 2008–2014. Retrieved January 1, 2016, from http://www.coneval.org.mx/Medicion/EDP/Paginas/Evolucion-de-las-dimensiones-de-la-pobreza-1990-2014-.aspx
  11. Desinventar (2015) Sistema de inventario de efectos de desastres. Retrieved July 1, 2015, from https://online.desinventar.org
  12. Donatti CI, Harvey CA, Martinez-Rodriguez MR, Vignola R, Rodriguez CM (2017) What information do policy makers need to develop climate adaptation plans for smallholder farmers? The case of Central America and Mexico. Clim Chang 141(1):107–121.  https://doi.org/10.1007/s10584-016-1787-x CrossRefGoogle Scholar
  13. Downing TE, Butterfield R, Cohen S, Huq S, Moss R, Rahman A, … Stephen L (2001) Vulnerability indices: climate change impacts and adaptations. (U. N. E. Programme, Ed.), Policy Series 3. New York, USA.: United NationsGoogle Scholar
  14. Fernández Eguiarte A, Zavala Hidalgo J, Romero Centeno R, Conde Álvarez C, Trejo Vázquez I (2015) Actualización de los escenarios de cambio climático para estudios de impactos, vulnerabilidad y adaptación. Ciudad de México. Retrieved from http://atlasclimatico.unam.mx/AECC/servmapas/
  15. INAFED (2005) Sistema Nacional de Información Municipal. Retrieved from www.siglo.inafed.gob.mx/snim/
  16. INEGI (1995) Memoria XI Censo General de Población y Vivienda 1990. (INEGI, Ed.) (1st ed.). Aguascalientes, México: INEGI. Retrieved from http://www.beta.inegi.org.mx/app/biblioteca/ficha.html?upc=702825490416
  17. INEGI (1996) Uso de Suelo y Vegetación a escala 1:250000, Serie II (conjunto nacional). Retrieved from http://www.conabio.gob.mx/informacion/gis/
  18. INEGI (2006) Resultados del Conteo de población y vivienda 2005. Instituto Nacional de Estadística Y GeografíaGoogle Scholar
  19. INEGI (2009) Censo Agrícola, Ganadero y Forestal 2007. Retrieved from http://www.inegi.org.mx/est/contenidos/proyectos/Agro/ca2007/Resultados_Agricola/default.aspx
  20. INEGI (2011) Principales resultados por localidad y municipio. Censo de población y vivienda 2010. (2011th ed.). Aguascalientes, México: INEGI. Retrieved from www.inegi.org.mx
  21. INEGI (2015) Principales resultados de la Encuesta Intercensal 2015. Estados Unidos Mexicanos. Aguascalientes, México: Instituto Nacional de Estadística y GeografíaGoogle Scholar
  22. INEGI (2016) Resultados de la encuesta nacional de ocupación y empleo. Aguascalientes, México: INEGI. Retrieved from http://www.inegi.org.mx/saladeprensa/boletines/2017/enoe_ie/enoe_ie2017_02.pdf
  23. IPCC (2007) Summary for policymakers. In Parry ML, Canziani OF, Palutikof JP, Linden PJ, Hanson CE (Eds.) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  24. IPCC (2013) IPCC Fifth Assessment Report (AR5) - the physical science basis. IPCC. doi: https://doi.org/10.1017/CBO9781107415324.004
  25. Keiler M, Sailer R, Jörg P, Weber C, Fuchs S, Zischg A, Sauermoser S (2006) Avalanche risk assessment—a multi-temporal approach, results from Gal ur, Austria. Nat Hazards Earth Syst Sci 6:637–651. Retrieved from www.nat-hazards-earth-syst-sci.net/6/637/2006/
  26. Lozano F, Soriano J, Martínez M, Asensio C (2013) The influence of blowing soil trapped by shrubs on fertility in Tabernas district (SE Spain). Land Degrad Dev 24:575–581.  https://doi.org/10.1002/ldr.2186 CrossRefGoogle Scholar
  27. Machado E, Ratick S (2017) Implications of indicator aggregation methods for global change vulnerability reduction efforts. Mitig Adapt Strateg Glob Chang :1–33. doi: https://doi.org/10.1007/s11027-017-9775-7
  28. Mandal S, Satpati LN, Choudhury BU, Sadhu S (2017) Climate change vulnerability to agrarian ecosystem of small Island: evidence from Sagar Island, India. Theor Appl Climatol :1–14. doi: https://doi.org/10.1007/s00704-017-2098-5
  29. Monnereau I, Mahon R, McConney P, Nurse L, Turner R, Vallès H (2017) The impact of methodological choices on the outcome of national-level climate change vulnerability assessments: an example from the global fisheries sector. Fish Fish. doi: https://doi.org/10.1111/faf.12199
  30. Monterroso-Rivas A, Conde C, Gay C, Gómez-Díaz J, López J (2014) Two methods to assess vulnerability to climate change in the Mexican agricultural sector. Mitig Adapt Strateg Glob Chang 19(4):445–461.  https://doi.org/10.1007/s11027-012-9442-y CrossRefGoogle Scholar
  31. SEMARNAT (2014) Programa Especial de Cambio Climático 2014–2018 (PECC). Diario Oficial de La Federación, DCCXXVII(28 abril 2014) :1–151Google Scholar
  32. Singh Boori M, Eustáquio Amaro V (2011) Natural and eco-environmental vulnerability assessment through multi-temporal satellite data sets in Apodi valley region, Northeast Brazil. J Geogr Reg Plan 4(4), 216–230. Retrieved from http://www.academicjournals.org/JGRP

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Alejandro Ismael Monterroso-Rivas
    • 1
  • Ana Cecilia Conde-Álvarez
    • 2
  • José Luís Pérez-Damian
    • 3
  • Jorge López-Blanco
    • 4
  • Marcos Gaytan-Dimas
    • 1
  • Jesús David Gómez-Díaz
    • 1
  1. 1.Departamento de SuelosUniversidad Autónoma ChapingoTexcocoMéxico
  2. 2.Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/nCiudad UniversitariaCiudad de MéxicoMéxico
  3. 3.Dirección de Gestión de Riesgos y Adaptación al Cambio ClimáticoInstituto Nacional de Ecología y Cambio Climático, INECCCiudad de MéxicoMéxico
  4. 4.Environmental Change ConsultingMerced GómezMéxico

Personalised recommendations