The road to achieving the long-term Paris targets: energy transition and the role of direct air capture

Abstract

In this paper, we quantify the energy transition and economic consequences of the long-term targets from the Paris agreement, with a particular focus on the targets of limiting global warming by the end of the century to 2 and 1.5 °C. The study assumes early actions and quantifies the market penetration of low carbon technologies, the emission pathways and the economic costs for an efficient reduction of greenhouse gas (GHG) emissions such that the temperature limit is not exceeded. We evaluate the potential role of direct air capture (DAC) and its impact on policy costs and energy consumption. DAC is a technology that removes emissions directly from the atmosphere contributing to negative carbon emissions. We find that, with our modelling assumptions, limiting global temperature to 1.5 °C is only possible when using DAC. Our results show that the DAC technology can play an important role in realising deep decarbonisation goals and in the reduction of regional and global mitigation costs with stringent targets. DAC acts a substitute to Bio-Energy with Carbon Capture and Storage (BECCS) in the stringent scenarios. For this analysis, we use the model MERGE-ETL, a technology-rich integrated assessment model with endogenous learning.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    MERGE-ETL is developed and maintained by the Energy Economics Group in the Paul Scherrer Institute.

  2. 2.

    Note that an infeasible optimization problem does not necessarily imply an infeasible target in the real world. It refers to the fact that with the current modelling assumptions, the problem cannot be solved.

  3. 3.

    Cumulative economic output losses are calculated using a 5% discount rate.

References

  1. APS (2011). Direct air capture of CO2 with chemicals: a technology assessment for the APS panel on public affairs. Technical Report American Physical Society

  2. Baciocchi R, Storti G, Mazzotti M (2006) Process design and energy requirements for the capture of carbon dioxide from air. Chem Eng Process Process Intensif 45:1047–1058

    Article  Google Scholar 

  3. Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456–1457

    Article  Google Scholar 

  4. Cen C, Tavoni M (2013) Direct air capture of CO2 and climate stabilization: a model based assessment. Clim Chang 118:59–72

    Article  Google Scholar 

  5. Fricko O, Havlik P, Rogelj J, Klimont Z, Gusti M, Johnson N, Kolp P, Strubegger M, Valin H, Amann M, Ermolieva T, Forsell N, Herrero M, Heyes C, Kindermann G, Krey V, McCollum DL, Obersteiner M, Pachauri S, Rao S, Schmid E, Schoepp W, Riahi K (2017) The marker quantification of the shared socioeconomic pathway 2: a middle-of-the-road scenario for the 21st century. Glob Environ Chang 42:251–267

    Article  Google Scholar 

  6. Friedlingstein P, Andrew RM, Rogelj J, Peters GP, Canadell JG, Knutti R, Luderer G, Raupach MR, Schaeffer M, van Vuuren DP, Le Quere C (2014) Persistent growth of CO2 emissions and implications for reaching climate targets. Nat Geosci 7:709–715

    Article  Google Scholar 

  7. Fuss S, Canadell JG, Peters GP, Tavoni M, Andrew RM, Ciais P, Jackson RB, Jones CD, Kraxner F, Nakicenovic N, Le Quere C, Raupach MR, Sharifi A, Smith P, Yamagata Y (2014) Betting on negative emissions. Nat Clim Chang 4:850–853

    Article  Google Scholar 

  8. Goeppert A, Czaun M, Surya Prakash GK, Olah GA (2012) Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere. Energy Environ Sci 5:7833–7853

    Article  Google Scholar 

  9. Hendriks, C., Graus, W., & van Bergen, F. (2004). Global carbon dioxide storage potential and costs. Technical Report Ecofys

  10. House KZ, Baclig AC, Ranjan M, van Nierop EA, Wilcox J, Herzog HJ (2011) Economic and energetic analysis of capturing CO2 from ambient air. Proc Natl Acad Sci 108:20428–20433

    Article  Google Scholar 

  11. Humpenoeder F, Popp A, Dietrich JP, Klein D, Lotze-Campen H, Bonsch M, Bodirsky BL, Weindl I, Stevanovic M, Mueller C (2014) Investigating afforestation and bioenergy CCS as climate change mitigation strategies. Environ Res Lett 9:064029

    Article  Google Scholar 

  12. IPCC (2007) Climate Change 2007. Forestry, Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC

  13. IPCC (2014). Clarke L., K. Jiang, K. Akimoto, M. Babiker, G. Blanford, K. Fisher-Vanden, J.-C. Hourcade, V. Krey, E. Kriegler, A. Löschel, D. McCollum, S. Paltsev, S. Rose, P.R. Shukla, M. Tavoni, B.C.C. van der Zwaan, and D.P. van Vuuren, 2014: Assessing transformation pathways. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  14. Keith DW (2009) Why capture CO2 from the atmosphere? Science 325:1654–1655

    Article  Google Scholar 

  15. Keith D, Ha-Duong M, Stolaroff J (2006) Climate strategy with CO2 capture from the air. Clim Chang 74:17–45

    Article  Google Scholar 

  16. Klein D, Luderer G, Kriegler E, Strefler J, Bauer N, Leimbach M, Popp A, Dietrich J, Humpener F, Lotze-Campen H, Edenhofer O (2014) The value of bioenergy in low stabilization scenarios: an assessment using remind-magpie. Clim Chang 123:705–718

    Article  Google Scholar 

  17. Kriegler E, Edenhofer O, Reuster L, Luderer G, Klein D (2013a) Is atmospheric carbon dioxide removal a game changer for climate change mitigation? Clim Chang 118:45–57

    Article  Google Scholar 

  18. Kriegler E, Tavoni M, Aboumahboub T, Luderer G, Calvin K, Demaere G, Krey V, Riahi K, Rosler H, Schaeffer M, Van Vuuren DP (2013b) What does the 2C target imply for a global climate agreement in 2020? The LIMITS study on Durban platform scenarios. Climate Change Economics 04:1340008

    Article  Google Scholar 

  19. Kriegler E, Riahi K, Bauer N, Schwanitz J, Petermann N, Bosetti V, Marcucci A, Otto S, Paroussos L, Rao S, Arroyo-Curras T, Ashina S, Bollen J, Eom J, Hamdi-Cherif M, Longden T, Kitous A, Mejean A, Sano F, Schaeffer M, Wada K, Capros P, van Vuuren D, Edenhofer O (2015) Making or breaking climate targets: the AMPERE study on staged accession scenarios for climate policy. Technol Forecast Soc Chang 9(Part A):24–44

    Article  Google Scholar 

  20. Kypreos S (2005) Modeling experience curves in MERGE (model for evaluating regional and global effects). Energy 30:2721–2737

    Article  Google Scholar 

  21. Kypreos S (2007) A MERGE model with endogenous technological change and the cost of carbon stabilization. Energy Policy 35:5327–5336

    Article  Google Scholar 

  22. Lackner KS (2009) Capture of carbon dioxide from ambient air. Eur. Phys. J. Special Topics 176:93–106

    Article  Google Scholar 

  23. Lackner KS, Brennan S, Matter JM, Park A-HA, Wright A, van der Zwaan B (2012) The urgency of the development of CO2 capture from ambient air. Proc Natl Acad Sci 109:13156–13162

    Article  Google Scholar 

  24. Manne A, Mendelsohn R, Richels R (1995) MERGE: a model for evaluating regional and global effects of GHG reduction policies. Energy Policy 23:17–34

    Article  Google Scholar 

  25. Marcucci, A (2012) Realizing a sustainable energy system in Switzerland in a global context. Ph.D. thesis ETH Zurich

  26. Marcucci A, Fragkos P (2015) Drivers of regional decarbonization through 2100: a multi-model decomposition analysis. Energy Econ 51:111–124

    Article  Google Scholar 

  27. Meinshausen M, Raper SCB, Wigley TML (2011) Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6: part I—model description and calibration. Atmos Chem Phys 11:1417–1456

    Article  Google Scholar 

  28. Obersteiner M, Alexandrov G, Benitez P, McCallum I, Kraxner F, Riahi K, Rokityanskiy D, Yamagata Y (2006) Global supply of biomass for energy and carbon sequestration from afforestation/reforestation activities. Mitig Adapt Strateg Glob Chang 11:1003–1021

    Article  Google Scholar 

  29. Popp A, Dietrich JP, Lotze-Campen H, Klein D, Bauer N, Krause M, Beringer T, Gerten D, Edenhofer O (2011) The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environ Res Lett 6:034017

    Article  Google Scholar 

  30. Ranger N et al (2012) Is it possible to limit global warming to no more than 1.5 °C? Clim Chang 111:973–981

    Article  Google Scholar 

  31. Riahi K, Kriegler E, Johnson N, Bertram C, den Elzen M, Eom J, Schaeffer M, Edmonds J, Isaac M, Krey V, Longden T, Luderer G, M’ejean A, McCollum DL, Mima S, Turton H, van Vuuren DP, Wada K, Bosetti V, Capros P, Criqui P, Hamdi-Cherif M, Kainuma M, Edenhofer O (2015) Locked into Copenhagen pledges—implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol Forecast Soc Chang 9(Part A):8–23

    Article  Google Scholar 

  32. Rogelj J, Luderer G, Pietzcker RC, Kriegler E, Schaeffer M, Krey V, Riahi K (2015) Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nature Clim. Change 5:519–527

    Google Scholar 

  33. Schuiling RD, Krijgsman P (2006) Enhanced weathering: an effective and cheap tool to sequester CO2. Clim Chang 74:349–354

    Article  Google Scholar 

  34. Simon A, Kaahaaina NB, Friedmann SJ, Aines RD (2011) Systems analysis and cost estimates for large scale capture of carbon dioxide from air. Energy Procedia 4:2893–2900 10th International Conference on Greenhouse Gas Control Technologies

    Article  Google Scholar 

  35. Stolaroff, J. K. (2006) Capturing CO2 from ambient air: a feasibility assessment. Ph.D. thesis Carnegie Mellon University

  36. Tavoni M, Kriegler E, Riahi K, van Vuuren DP, Aboumahboub T, Bowen A, Calvin K, Campiglio E, Kober T, Jewell J, Luderer G, Marangoni G, McCollum D, van Sluisveld M, Zimmer A, van der Zwaan B (2015) Post-2020 climate agreements in the major economies assessed in the light of global models. Nat Clim Chang 5:119–126

    Article  Google Scholar 

  37. The Royal Society (2009) Geoengineering the climate. Science, governance and uncertainty

  38. UNFCCC (2015) Adoption of the Paris agreement. Proposal by the President. Technical Report UN Framework Convention on Climate Change

  39. van Vuuren D, Deetman S, van Vliet J, van den Berg M, van Ruijven B, Koelbl B (2013) The role of negative CO2 emissions for reaching 2 °C—insights from integrated assessment modelling. Clim Chang 118:15–27

    Article  Google Scholar 

  40. Zeman F (2007) Energy and material balance of CO2 capture from ambient air. Environ Sci Technol 41:7558–7563

    Article  Google Scholar 

Download references

Acknowledgements

S. Kypreos thanks ETSAP for supporting his participation to the IEW-2015. A. Marcucci and E. Panos thank the financial support of Swiss Competence Center for Energy Research (SCCER) CREST and SCCER—Supply of Electricity, which are in turn financially supported by the Swiss Commission for Technology and Innovation (CTI). We would also like to thank the three anonymous reviewers for their valuable suggestions and comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adriana Marcucci.

Electronic supplementary material

ESM 1

(DOCX 75 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marcucci, A., Kypreos, S. & Panos, E. The road to achieving the long-term Paris targets: energy transition and the role of direct air capture. Climatic Change 144, 181–193 (2017). https://doi.org/10.1007/s10584-017-2051-8

Download citation