The Benefits of Reduced Anthropogenic Climate changE (BRACE): a synthesis

  • Brian C. O’Neill
  • James M. Done
  • Andrew Gettelman
  • Peter Lawrence
  • Flavio Lehner
  • Jean-Francois Lamarque
  • Lei Lin
  • Andrew J. Monaghan
  • Keith Oleson
  • Xiaolin Ren
  • Benjamin M. Sanderson
  • Claudia Tebaldi
  • Matthias Weitzel
  • Yangyang Xu
  • Brooke Anderson
  • Miranda J. Fix
  • Samuel Levis
Article

Abstract

Understanding how impacts may differ across alternative levels of future climate change is necessary to inform mitigation and adaptation measures. The Benefits of Reduced Anthropogenic Climate changE (BRACE) project assesses the differences in impacts between two specific climate futures: a higher emissions future with global average temperature increasing about 3.7 °C above pre-industrial levels toward the end of the century and a moderate emissions future with global average warming of about 2.5 °C. BRACE studies in this special issue quantify avoided impacts on physical, managed, and societal systems in terms of extreme events, health, agriculture, and tropical cyclones. Here we describe the conceptual framework and design of BRACE and synthesize its results. Methodologically, the project combines climate modeling, statistical analysis, and impact assessment and draws heavily on large ensembles using the Community Earth System Model. It addresses uncertainty in future societal change by employing two pathways for future socioeconomic development. Results show that the benefits of reduced climate change within this framework vary substantially across types of impacts. In many cases, especially related to extreme heat events, there are substantial benefits to mitigation. The benefits for some heat extremes are statistically significant in some regions as early as the 2020s and are widespread by mid-century. Benefits are more modest for agriculture and exposure to some health risks. Benefits are negative for agriculture when CO2 fertilization is incorporated. For several societal impacts, the effect on outcomes of alternative future societal development pathways is substantially larger than the effect of the two climate scenarios.

Supplementary material

10584_2017_2009_MOESM1_ESM.pdf (1.3 mb)
ESM 1(PDF 1.32 MB)

References

  1. Alexeeff SE, Nychka D, Sain SR, Tebaldi C (2016) Emulating mean patterns and variability of temperature across and within scenarios in anthropogenic climate change experiments. Clim Chang. doi:10.1007/s10584-016-1809-8
  2. Anderson GB, Oleson KW, Jones B, Peng RD (2016a) Classifying heatwaves: developing health-based models to predict high-mortality versus moderate United States heatwaves. Clim Chang. doi:10.1007/s10584-016-1776-0
  3. Anderson GB, Oleson KW, Jones B, Peng RD (2016b) Projected trends in high-mortality heatwaves under different scenarios of climate, population, and adaptation in 82 US communities. Clim. Chang. doi:10.1007/s10584-016-1779-x
  4. Bacmeister JT, Reed KA, Hannay C, Lawrence P, Bates S, Truesdale JE, Rosenbloom N, Levy M (2016) Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Clima Chang. doi:10.1007/s10584-016-1750-x
  5. Done JM, PaiMazumder D, Towler E, Kishtawal CM (2015) Estimating impacts of North Atlantic tropical cyclones using an index of damage potential. Clim Chang. doi:10.1007/s10584-015-1513-0
  6. EPA (2015) Climate change in the USA: benefits of global action. United States Environmental Protection Agency, Office of Atmospheric Programs, Washington, DC, p. 93Google Scholar
  7. Fix MJ, Cooley D, Sain SR, Tebaldi C (2016) A comparison of US precipitation extremes under RCP8.5 and RCP4.5 with an application of pattern scaling. Clim Chang. doi:10.1007/s10584-016-1656-7
  8. Gettelman A, Bresh D, Chen CC, Truesdale JE, Bacmeister JT (2017) Projections of future tropical cyclone damage with a high resolution global climate model. Clima Chang. doi:10.1007/s10584-017-1902-7
  9. Houser T, Hsiang S, Kopp R, Larsen K, Delgado M, Jina A, Mastrandrea MD, Mohan S, Muir-Wood R, Rasmussen DJ, Rising J, Wilson P (2015) Economic risks of climate change: an American prospectus. Columbia University PressGoogle Scholar
  10. Jones B, O’Neill B (2016) Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ Res Lett 11:084003CrossRefGoogle Scholar
  11. Jones B, Tebaldi C, O’Neill BC, Oleson K, Gao J (submitted) Avoiding population exposure to heat-related extremes: demographic change vs climate change. Climatic ChangeGoogle Scholar
  12. Kay J, Deser C, Phillips A, Mai A, Hannay C, Strand G, Arblaster J, Bates S, Danabasoglu G, Edwards J (2015) The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. B Am Meteorol Soc 96:1333–1349CrossRefGoogle Scholar
  13. Lehner F, Deser C, Sanderson BM (2016) Future risk of record-breaking summer temperatures and its mitigation. Clim Chang. doi:10.1007/s10584-016-1616-2
  14. Levis S, Badger A, Drewniak B, Nevison C, Ren X (2016) CLM crop yields and water requirements: avoided impacts by choosing RCP 4.5 over 8.5. Clim Chang. doi:10.1007/s10584-016-1654-9
  15. Lin L, Gettelman A, Fu Q, Xu Y (2015) Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols. Clim Chang. doi:10.1007/s10584-016-1615-3
  16. Marsha A, Sain S, Heaton M, Monaghan A, Wilhelmi O (2016) Influences of climatic and population changes on heat-related mortality in Houston, Texas, USA. Clim Chang. doi:10.1007/s10584-016-1775-1
  17. Monaghan AJ, Sampson K, Steinhoff D, Ernst K, Ebi K, Jones B, Hayden M (2015) The potential impacts of 21st century climatic and population changes on human exposure to the virus vector mosquito Aedes aegypti. Clim Chang. doi:10.1007/s10584-016-1679-0
  18. O’Neill BC, Gettelman A (In preparation) Overview of the BRACE project. Climatic ChangeGoogle Scholar
  19. Oleson K, Anderson G, Jones B, McGinnis S, Sanderson B (2015) Avoided climate impacts of urban and rural heat and cold waves over the US using large climate model ensembles for RCP8.5 and RCP4.5. Clim Chang. doi:10.1007/s10584-015-1504-1
  20. Ren X, Weitzel M, O’Neill BC, Lawrence P, Meiyappan P, Levis S, Balistreri EJ, Dalton M (2016) Avoided economic impacts of climate change on agriculture: integrating a land surface model (CLM) with a global economic model (iPETS). Clim Chang. doi:10.1007/s10584-016-1791-1
  21. Riahi K, van Vuuren DP, Kriegler E, Edmonds J, O’Neill BC, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W, Popp A, Cuaresma JC, Samir KC, Leimbach M, Jiang L, Kram T, Rao S, Emmerling J, Ebi K, Hasegawa T, Havlik P, Humpenoeder F, da Silva LA, Smith S, Stehfest E, Bosetti V, Eom J, Gernaat D, Masui T, Rogelj J, Strefler J, Drouet L, Krey V, Luderer G, Harmsen M, Takahashi K, Baumstark L, Doelman JC, Kainuma M, Klimont Z, Marangoni G, Lotze-Campen H, Obersteiner M, Tabeau A, Tavoni M (2017) The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Global Environmental Change-Human and Policy Dimensions 42:153–168CrossRefGoogle Scholar
  22. Sanderson BM, Oleson KW, Strand WG, Lehner F, O’Neill BC (2015) A new ensemble of GCM simulations to assess avoided impacts in a climate mitigation scenario. Clim Chang. doi:10.1007/s10584-015-1567-z
  23. Tebaldi C, Lobell D (2015) Estimated impacts of emission reductions on wheat and maize crops. Clim Chang. doi:10.1007/s10584-015-1537-5
  24. Tebaldi C, Wehner MF (2016) Benefits of mitigation for future heat extremes under RCP4.5 compared to RCP8.5. Clim Chang. doi:10.1007/s10584-016-1605-5
  25. Warren R, Lowe JA, Arnell N, Hope C, Berry P, Brown S, Gambhir A, Gosling SN, Nicholls R, O’Hanley J (2013) The AVOID programme’s new simulations of the global benefits of stringent climate change mitigation. Clim Chang 120:55–70CrossRefGoogle Scholar
  26. Warszawski L, Frieler K, Huber V, Piontek F, Serdeczny O, Schewe J (2014) The inter-sectoral impact model intercomparison project (ISI–MIP): project framework. Proc Natl Acad Sci 111:3228–3232CrossRefGoogle Scholar
  27. Xu Y, Lamarque J-F, Sanderson BM (2015) The importance of aerosol scenarios in projections of future heat extremes. Clim Chang. doi:10.1007/s10584-015-1565-1

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Brian C. O’Neill
    • 1
  • James M. Done
    • 1
  • Andrew Gettelman
    • 1
  • Peter Lawrence
    • 1
  • Flavio Lehner
    • 1
  • Jean-Francois Lamarque
    • 1
  • Lei Lin
    • 2
  • Andrew J. Monaghan
    • 1
  • Keith Oleson
    • 1
  • Xiaolin Ren
    • 1
  • Benjamin M. Sanderson
    • 1
  • Claudia Tebaldi
    • 1
  • Matthias Weitzel
    • 1
  • Yangyang Xu
    • 3
  • Brooke Anderson
    • 4
  • Miranda J. Fix
    • 4
  • Samuel Levis
    • 5
  1. 1.National Center for Atmospheric Research (NCAR)BoulderUSA
  2. 2.School of Atmospheric SciencesSun Yat-sen UniversityGuangzhouChina
  3. 3.Texas A&M UniversityCollege StationUSA
  4. 4.Colorado State UniversityFort CollinsUSA
  5. 5.SLevis ConsultingSan DiegoUSA

Personalised recommendations