Abstract
Climate change in the Amazon region is the subject of many studies not only due to its stance as an emblematic ecosystem but also as a region where changes have been dramatic for over 30 years, mainly due to deforestation. We investigate how people settled in the Amazon perceive environmental changes by comparing these perceptions with satellite rainfall data for 12 sites representing the community diversity in the region. Perceptions are varied and agreement with physical, measured data is not always good. However, the arc of deforestation, where the downward trend of rainfall is more strongly observed, also appears as the region where the populations have the highest perception of rainfall change.
This is a preview of subscription content, access via your institution.




References
Almeida CT, Oliveira-Júnior JF, Delgado RC, Cubo P, Ramos MC (2016) Spatiotemporal rainfall and temperature trends throughout the Brazilian Legal Amazon, 1973–2013. Int J Climatol. doi:10.1002/joc.4831
Arvor D, Meirelles M, Dubreuil V, Begué A, Shimabukuro YE (2012) Analyzing the agricultural transition in Mato Grosso, Brazil, using satellite-derived indices. Appl Geogr 32:702–713
Arvor D, Dubreuil V, Ronchail J, oes MS, Funatsu BM (2014) Spatial patterns of rainfall regimes related to levels of double cropping agriculture systems in Mato Grosso (Brazil). Int J Climatol 34:2622–2633. doi:10.1002/joc.3863
Ashouri H, Hsu KL, Sorooshian S, Braithwaite DK, Knapp KR, Cecil LD, Nelson BR, Prat OP (2015) PERSIANN-CDR Daily Precipitation Climate Data Record from multisatellite observations for hydrological and climate studies. Bull Am Meteorol Soc 96:69–83. doi:10.1175/BAMS-D-13-00068.1
Barlow J et al (2016) Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 353:144–147. doi:10.1038/nature18326
Betts R, Cox P, Collins M, Harris P, Huntingford C, Jones C (2004) The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theor Appl Climatol 78(1–3):157–175. doi:10.1007/s00704-004-0050-y
Brondizio E, Moran EF (2008) Human dimensions of climate change: the vulnerability of small farmers in the Amazon. Philos Trans R Soc Lond 363:1803–1809
Cook B, Zeng N, Yoon JH (2012) Will Amazonia dry out? Magnitude and causes of change from IPCC climate model projections. Earth Interact 16. doi:10.1175/2011EI398.1
Curi MV, Litre G, Ibiapina I, Pinto de Andrade AJ (2016) Mudanças climáticas e percepção ambiental. contribuições da antropologia do clima. In: Bursztyn M, Rodrigues-Filho S (eds) O clima em transe. Vulnerabilidade e adaptação da agricultura familiar. IABS/Garamond, Brasília
Debortoli NS, Dubreuil V, Funatsu B, Delahaye F, de Oliveira C, Rodrigues-Filho S, Saito CH, Fetter R (2015) Rainfall patterns in the Southern Amazon: a chronological perspective (1971–2010). Clim Change 132:1–20. doi:10.1007/s10584-015-1415-1
Delahaye F, Kirstetter PE, Dubreuil V, Machado LAT, Vila D (2015) A consistent gauge database for daily rainfall analysis over the Legal Brazilian Amazon. J Hydrol 525:292–304. doi:10.1016/j.jhydrol.2015.04.01
Drapeau G, Mering C, Ronchail J, Filizola N (2011) Variabilité hydrologique et vulnérabilité des populations du lago janauaca (Amazonas, Brésil). Confins [online] 11. doi:10.4000/confins.6904. http://confins.revues.org/6904
Dubreuil V (2002) Environnement et télédétection au Brésil. Presses Univ. de Rennes, 188p, ISBN 2-86847-732-1
Dubreuil V, Debortoli N, Funatsu B, Nedelec V, Durieux L (2012) Impact of land-cover change in the Southern Amazonia Climate: a case study for the region of Alta Floresta, Mato Grosso, Brazil. Environ Monit Assess 184:877–891. doi:10.1007/s10661-011-2006-x
Espinoza Villar JC, Ronchail J, Guyot JL, Cochonneau G, Naziano F, Lavado W, Oliveira ED, Pombosa R, Vauchel P (2009) Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int J Climatol 29:1574–1594. doi:10.1002/joc.1791
Fearnside P (2005) Deforestation in Brazilian Amazonia: history, rates and consequences. Conserv Biol 19(3):680–688
Gash J, Nobre CA, Roberts JM, Victoria RL (1996) Amazonian deforestation and climate. Chichester, 611p
Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Natl Acad Sci (USA) 109(37):E2415–E2423. doi:10.1073/pnas.1205276109
Hsu K, Gao X, Sorooshian S, Gupta HV (1997) Precipitation estimation from remotely sensed information using artificial neural networks. J Appl Meteorol Climatol 36:1176–1190. doi:10.1175/1520-0450(1997)0362.0.CO;2
Hsu K, Gupta HV, Gao X, Sorooshian S (1999) Estimation of physical variables from multichannel remotely sensed imagery using a neural network: application to rainfall estimation. Water Resour Res 35:1605–1618. doi:10.1029/1999WR900032
Laurance WF, Cochrane MA, Bergen S, Fearnside PM, Delamônica P, C Barber SD, Fernandes T (2001) The future of the Brazilian Amazon. Science 291:438–439
Le Tourneau FM, Droulers M (2010) L’Amazonie brésilienne et le développement durable. Belin, coll. “Mappemonde”, Paris, 477p, ISBN 978-2-7011-5877-8
Le Tourneau FM, Marchand G, Greissing A, Nasuti S, Droulers M, Bursztyn M, Léna P, Dubreuil V (2013a) The DURAMAZ indicator system: a cross-disciplinary comparative tool for assessing ecological and social changes in the Amazon. Phil Trans R Soc B 368. doi:10.1098/rstb.2012.0475, 20120475
Le Tourneau FM, Marchand G, Nasuti S, Greissing A, Droulers M, Bursztyn M, Léna P, Dubreuil V (2013b) Assessing the impacts of sustainable development projects in the Amazon: the DURAMAZ experiment. Sustain Sci 8(2). doi:10.1007/s11625-013-0200-1
Liebmann B, Camargo SJ, Seth A, Marengo JA, Carvalho LMV, Allured D, Fu R, Vera CS (2007) Onset and end of the rainy season in South America in observations and the ECHAM 4.5 Atmospheric General Circulation Model. J Climate 20:2037–2050. doi:10.1175/JCLI4122.1
Lindoso DP, Rocha JD, Debortoli N, Parente II, Eiró F, Bursztyn M, Rodrigues-Filho S (2014) Integrated assessment of smallholder farming’s vulnerability to drought in the Brazilian Semi-arid: a case study in Ceará. Clim Change 127(1). doi:10.1007/s10584-014-1116-1
Litre G, Nasuti S, Garcez CG, Lindoso D, Eiró F, Simoni J, Silva C, Canha CF (2014) From rainforests to drylands: comparing family farmers perceptions of climate change in three Brazilian biomes. In: Filho W L, Alves F, Caeiro S, Azeiteiro U (eds) International perspectives on Climate Change. Latin America and Beyond. Springer International Publishing, Berlin, pp 165–185. 10.1007/978-3-319-04489-7
Marengo JA, Liebmann B, Grimm AM, Misra V, Silva Dias PL, Cavalcanti IFA, Carvalho LMV, Berbery EH, Ambrizzi T, Vera CS, Saulo AC, Nogues-Paegle J, Zipser E, Seth A, Alves LM (2012) Recent developments on the South American monsoon system. Int J Climatol 32:1–21. doi:10.1002/joc.2254
Morton JF (2007) The impact of climate change on smallholder and subsistence agriculture. Proc Natl Acad Sci (USA) 104:19680–19685
Neethling E, Petitjean T, Quénol H, Barbeau G (2016) Assessing local climate vulnerability and winegrowers’ adaptive processes in the context of climate change. Mitig Adapt Strateg Glob Change. doi:10.1007/s11027-015-9698-0
Nepstad D, McGrath D, Stickler C, Alencar A, Azevedo A, Swette B, Bezerra T, DiGiano M, Shimada J, Seroa da Motta R, Armijo E, Castello L, Brando P, Hansen MC, McGrath-Horn M, Carvalho O, Hess L (2014) Slowing amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344(6188):1118–1123. doi:10.1126/science.1248525
Nobre CA, Sampaio G, Borma LS, Castilla-Rubio JC, Silva JS, Cardoso M (2016) Land-use and climate change risks in the amazon and the need of a novel sustainable development paradigm. PNAS 113(39):10759–10768. doi:10.1073/pnas.1605516113
Ochoa-Quintero JM, Gardner TA, Rosa I, de Barros Ferraz SF, Sutherland WJ (2015) Thresholds of species loss in Amazonian deforestation frontier landscapes. Conserv Biol 29:440–451. doi:10.1111/cobi.12446
Ronchail J, Cochonneau G, Molinier M, Guyot JL, De Miranda Chaves AG, Guimarães V, de Oliveira E (2002) Interannal rainfall variability in the amazon basin and sea-surface temperatures in the equatorial pacific and the tropical atlantic oceans. Int J Climatol 22(13):1663–1686. doi:10.1002/joc.815
Sorooshian S, Hsu K, Braithwaite D, Ashouri H, NOAA CDR Program (2014) NOAA Climate Data Record (CDR) of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN-CDR), Version 1 Revision 1 [1983–2008]. NOAA National Centers for Environmental Information. doi:10.7289/V51V5BWQ
Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud R, Gochis D, Gutzler D, Lettenmaier D, Marengo J, Mechoso CR, Nogues-Paegle J, Silva Dias PL, Zhang C (2006) Toward a unified view of the American monsoon systems. J Clim 19:4977–5000. doi:10.1175/JCLI3896.1
Acknowledgements
The authors wish to thank the French Agence Nationale de la Recherche which funded the DURAMAZ project (DURAMAZ-ANR-06-BLAN-0176).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Dubreuil, V., Funatsu, B.M., Michot, V. et al. Local rainfall trends and their perceptions by Amazonian communities. Climatic Change 143, 461–472 (2017). https://doi.org/10.1007/s10584-017-2006-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10584-017-2006-0