Skip to main content

Potential impact of climate change on the risk of windthrow in eastern Canada’s forests

Abstract

Climate change is likely to affect windthrow risks at northern latitudes by potentially changing high wind probabilities and soil frost duration. Here, we evaluated the effect of climate change on windthrow risk in eastern Canada’s balsam fir (Abies balsamea [L.] Mill.) forests using a methodology that accounted for changes in both wind speed and soil frost duration. We used wind speed and soil temperature projections at the regional scale from the CRCM5 regional climate model (RCM) driven by the CanESM2 global climate model (GCM) under two representative concentration pathways (RCP4.5, RCP8.5), for a baseline (1976–2005) and two future periods (2041–2070, 2071–2100). A hybrid mechanistic model (ForestGALES) that considers species resistance to uprooting and wind speed distribution was used to calculate windthrow risk. An increased risk of windthrow (3 to 30%) was predicted for the future mainly due to an increased duration of unfrozen soil conditions (by up to 2 to 3 months by the end of the twenty-first century under RCP8.5). In contrast, wind speed did not vary markedly with a changing climate. Strong regional variations in wind speeds translated into regional differences in windthrow risk, with the easternmost region (Atlantic provinces) having the strongest winds and the highest windthrow risk. Because of the inherent uncertainties associated with climate change projections, especially regarding wind climate, further research is required to assess windthrow risk from the optimum combination of RCM/GCM ensemble simulations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. From ensemble mean values of all CMIP5 GCMs.

  2. Because the return interval is the inverse of the probability of windthrow, we used the inverse of h/87840.

  3. See Online Resource 3 in which CWS values are reported for a range of balsam fir stands varying in their characteristics and vulnerability to windthrow.

References

  • Achim A, Ruel J-C, Gardiner BA, Laflamme G, Meunier S (2005) Modelling the vulnerability of balsam fir forests to wind damage. For Ecol Manag 204:35–50. doi:10.1016/j.foreco.2004.07.072

    Article  Google Scholar 

  • Arora VK, Scinocca JF, Boer GJ et al (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys res Lett 38:L05805. doi:10.1029/2010GL046270

    Article  Google Scholar 

  • Blennow K, Andersson M, Bergh J, Sallnäs O, Olofsson E (2010a) Potential climate change impacts on the probability of wind damage in a south Swedish forest. Clim Chang 99:261–278. doi:10.1007/s10584-009-9698-8

    Article  Google Scholar 

  • Blennow K, Andersson M, Sallnäs O, Olofsson E (2010b) Climate change and the probability of wind damage in two Swedish forests. For Ecol Manag 259:818–830. doi:10.1016/j.foreco.2009.07.004

    Article  Google Scholar 

  • Blennow K, Olofsson E (2008) The probability of wind damage in forestry under a changed wind climate. Clim Chang 87:347–360. doi:10.1007/s10584-007-9290-z

    Article  Google Scholar 

  • Bouchard M, Pothier D, Ruel J-C (2008) Stand-replacing windthrow in the boreal forest of eastern Quebec. Can J For Res 39:481–487

    Article  Google Scholar 

  • Boudoux M (1978) Tables de rendement empiriques pour l'épinette noire, le sapin baumier et le pin gris au Québec. Min. Terres et Forêts, Québec

    Google Scholar 

  • Cheng CS, Lopes E, Fu C, Huang Z (2014) Possible impacts of climate change on wind gusts under downscaled future climate conditions: updated for Canada. J Clim 27:1255–1270. doi:10.1175/JCLI-D-13-00020.1

    Article  Google Scholar 

  • Cimon-Morin J, Ruel J-C, Darveau M (2010) Short term effects of alternative silvicultural treatments on stand attributes in irregular balsam fir-black spruce stands. For Ecol Manag 260:907–914. doi:10.1016/j.foreco.2010.06.010

    Article  Google Scholar 

  • Colle BA, Booth JF, Chang EKM (2015) A review of historical and future changes of extratropical cyclones and associated impacts along the US East Coast. Curr Clim Change Rep 1:125–143. doi:10.1007/s40641-015-0013-7

    Article  Google Scholar 

  • Eum H-I, Gachon P, Laprise R (2014) Developing a likely climate scenario from multiple regional climate model simulations with an optimal weighting factor. Clim Dyn 43:11–35. doi:10.1007/s00382-013-2021-4

    Article  Google Scholar 

  • Forestry Commission (2015) ForestGALES-A wind risk decision support tool for forest management in Britain: user manual, version 2.5. Forestry Commission, Edinburgh

    Google Scholar 

  • Frank RM (1990) Abies balsamea (L.) Mill. - balsam fir. In: Burns RM, Honkala BH (eds) Silvics of North America, Vol. 1: conifers. USDA For Serv, Washington, DC

    Google Scholar 

  • Gachon P, Laprise R, Zwack P, Saucier FJ (2003) The effects of interactions between surface forcings in the development of a model-simulated polar low in Hudson Bay. Tellus a 55(1):61–87

    Article  Google Scholar 

  • Gardiner B, Peltola H, Kellomaki S (2000) Comparison of two models for predicting the critical wind speeds required to damage coniferous trees. Ecol Model 129:1–23

    Article  Google Scholar 

  • Gardiner B, Schuck A, Schelhaas M-J, Orazio C, Blennow K, Nicoll BE (2013) Living with storm damage to forests: what science can tell us. European Forest Institute, Joensuu

    Google Scholar 

  • Gastineau G, Soden BJ (2009) Model projected changes of extreme wind events in response to global warming. Geophys res Lett 36:L10810. doi:10.1029/2009GL037500

    Article  Google Scholar 

  • Girard F, De Grandpré L, Ruel J-C (2014) Partial windthrow as a driving process of forest dynamics in old-growth boreal forests. Can J For Res 44:1165–1176. doi:10.1139/cjfr-2013-0224

    Article  Google Scholar 

  • Gregow H, Peltola H, Laapas M, Saku S, Venäläinen A (2011) Combined occurrence of wind, snow loading and soil frost with implications for risks to forestry in Finland under the current and changing climatic conditions. Silva Fenn 45:35–54. doi:10.14214/sf.30

    Article  Google Scholar 

  • Guo D (2008) Zonation with dynamically constrained agglomerative clustering and partitioning (REDCAP). Int J Geogr Inf Sci 22:801–823. doi:10.1080/13658810701674970

    Article  Google Scholar 

  • Guo D (2011) REDCAP: a zonation toolkit (version 2.0.0)—user manual. Department of Geography, University of South Carolina, Columbia

    Google Scholar 

  • Hanson C, Goodess CM (2004) Predicting future changes in wind. In: BETWIXT: built EnvironmenT-weather scenarios for investigation of impacts and eXTremes. University of East Anglia, Clim Res Unit, Norwich, UK

    Google Scholar 

  • Heinonen T, Pukkala T, Ikonen VP, Peltola H, Venäläinen A, Dupont S (2009) Integrating the risk of wind damage into forest planning. For Ecol Manag 258:1567–1577. doi:10.1016/j.foreco.2009.07.006

    Article  Google Scholar 

  • Helama S, Tuomenvirta H, Venäläinen A (2011) Boreal and subarctic soils under climatic change. Glob Planet Change 79:37–47. doi:10.1016/j.gloplacha.2011.08.001

    Article  Google Scholar 

  • Henry HAL (2013) Soil freezing dynamics in a changing climate: implications for agriculture. In: Imai Y, Yoshida M, Matsumoto N (eds) Plant and microbe adaptations to cold in a changing world. Springer, New York, pp 17–27

    Chapter  Google Scholar 

  • Hernández-Díaz L, Laprise R, Sushama L, Martynov A, Winger K, Dugas B (2013) Climate simulation over the CORDEX-Africa domain using the fifth generation Canadian regional climate model (CRCM5). Clim Dyn 40(5–6):1415–1433. doi:10.1007/s00382-012-1387-z

    Article  Google Scholar 

  • Hundecha Y, St-Hilaire A, Ouarda T, El Adlouni S, Gachon P (2008) A non-stationary extreme value analysis for the assessment of changes in extreme wind speed over the Gulf of St.Lawrence, Canada. J Appl Meteorol Climatol 47(11):2745–2759. doi:10.1175/2008JAMC1665.1

    Article  Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, and New York, NY, USA 582 pp

    Google Scholar 

  • Jungqvist G, Oni SK, Teutschbein C, Futter MN (2014) Effect of climate change on soil temperature in Swedish boreal forests. PLoS One 9:e93957. doi:10.1371/journal.pone.0093957

    Article  Google Scholar 

  • Kamimura K, Kitagawa K, Saito S, Mizunaga H (2012) Root anchorage of hinoki (Chamaecyparis obtuse (Sieb. Et Zucc.) Endl.) under the combined loading of wind and rapidly supplied water on soil: analyses based on tree-pulling experiments. Eur J for res 131:219–227

    Article  Google Scholar 

  • Kellomäki S, Maajärvi M, Strandman H, Kilpeläinen A, Peltola H (2010) Model computations on the climate change effects on snow cover, soil moisture and soil frost in the boreal conditions over Finland. Silva Fenn 44:213–233

    Article  Google Scholar 

  • Laprise R, Hernández-Diaz L, Tete K et al (2013) Climate projections over CORDEX Africa domain using the fifth-generation Canadian regional climate model (CRCM5). Clim Dyn 41:3219–3246. doi:10.1007/s00382-012-1651-2

    Article  Google Scholar 

  • Long Z, Perrie W, Gyakum J, Laprise R, Caya D (2009) Scenario changes in the climatology of winter midlatitude cyclone activity over eastern North America and the Northwest Atlantic. J Geophys res 114:D12111. doi:10.1029/2008JD010869

    Article  Google Scholar 

  • Martynov A, Laprise R, Sushama L, Winger K, Šeparovic L, Dugas B (2013) Reanalysis-driven climate simulation over CORDEX North America domain using the Canadian regional climate model, version 5: model performance evaluation. Clim Dyn 41(11–12):2973–3005. doi:10.1007/s00382-013-1778-9

    Article  Google Scholar 

  • McInnes KL, Erwin TA, Bathols JM (2011) Global climate model projected changes in 10 m wind speed and direction due to anthropogenic climate change. Atmos Sci let 12:325–333. doi:10.1002/asl.341

    Article  Google Scholar 

  • Mesinger F, DiMego G, Kalnay E et al (2006) North American regional reanalysis. Bull am Meteorol Soc 87:343–360. doi:10.1175/BAMS-87-3-343

    Article  Google Scholar 

  • Mitchell SJ (2013) Wind as a natural disturbance agent in forests: a synthesis. Forestry 86:147–157. doi:10.1093/forestry/cps058

    Article  Google Scholar 

  • Mitchell SJ, Ruel J-C (2015) Modeling windthrow at stand and landscape scales. In: Perera AH, Sturtevant BR, Buse LJ (eds) Simulation modeling of forest landscape disturbances. Springer International Publishing, Cham, pp 17–43. doi:10.1007/978-3-319-19809-5

    Chapter  Google Scholar 

  • Moore JR, Watt MS (2015) Modelling the influence of predicted future climate change on the risk of wind damage within New Zealand's planted forests. Glob Change Biol 21:3021–3035. doi:10.1111/gcb.12900

    Article  Google Scholar 

  • Peltola H, Kellomäki S, Väisänen H (1999) Model computations of the impact of climatic change on the windthrow risk of trees. Clim Chang 41:17–36. doi:10.1023/A:1005399822319

    Article  Google Scholar 

  • Plante M, Son S-W, Atallah EH, Gyakum J, Grise K (2015) Extratropical cyclone climatology across eastern Canada. Int J Climatol 35:2759–2776. doi:10.1002/joc.4170

    Article  Google Scholar 

  • Pretzsch H, Biber P, Schütze G, Uhl E, Rötzer T (2014) Forest stand growth dynamics in central Europe have accelerated since 1870. Nat Commun 5:4967. doi:10.1038/ncomms5967

    Article  Google Scholar 

  • Price DT, Alfaro RI, Brown KJ et al (2013) Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ Rev 21:322–365. doi:10.1139/er-2013-0042

    Article  Google Scholar 

  • R Core Team 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

  • Riahi K, Rao S, Krey V et al (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Chang 109:33–57. doi:10.1007/s10584-011-0149-y

    Article  Google Scholar 

  • Ruel J-C (1989) Mortalité du bois laissé sur pied à la suite d'une coupe par bandes dans trois régions du Québec. For Chron 65:107–113. doi:10.5558/tfc65107-2

    Article  Google Scholar 

  • Ruel J-C (2000) Factors influencing windthrow in balsam fir forests: from landscape studies to individual tree studies. For Ecol Manag 135:169–178. doi:10.1016/S0378-1127(00)00308-X

    Article  Google Scholar 

  • Ruel J-C, Quine CP, Meunier S, Suarez J (2000) Estimating windthrow risk in balsam fir stands with the ForestGales model. For Chron 76:329–337. doi:10.5558/tcf76329-2

    Article  Google Scholar 

  • Segal MR, Xiao Y (2011) Multivariate random forests. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1:80–87

    Google Scholar 

  • Šeparovic L, Alexandru A, Laprise R, Martynov A, Sushama L, Winger K, Valin M (2013) Present climate and climate change over North America as simulated by the fifth-generation Canadian regional climate model (CRCM5). Clim Dyn 41(11–12):3167–3201. doi:10.1007/s00382-013-1737-5

    Article  Google Scholar 

  • Smith RL (1985) Maximum likelihood estimation in a class of nonregular cases. Biometrika 72:67–92. doi:10.2307/2336336

    Article  Google Scholar 

  • Strong WL, LaRoi GH (1983) Root-system morphology of common boreal forest trees in Alberta. Canada Can J For Res 13:1164–1173

    Article  Google Scholar 

  • Thomson AM, Calvin KV, Smith SJ et al (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Chang 109:77–94. doi:10.1007/s10584-011-0151-4

    Article  Google Scholar 

  • van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K et al (2011) The representative concentration pathways: an overview. Clim Chang 109(1):5–31. doi:10.1007/s10584-011-0148-z

    Article  Google Scholar 

  • Venäläinen A, Tuomenvirta H, Heikinheimo M, Kellomäki S, Peltola H, Strandman H, Väisänen H (2001) Impact of climate change on soil frost under snow cover in a forested landscape. Clim Res 17:63–72. doi:10.3354/cr017063

    Article  Google Scholar 

  • Verseghy D (2011) CLASS–The Canadian Land Surface Scheme (version 3.5) - Technical documentation (version 1). Environment Canada, Dorval, QC, Canada

  • Waldron K, Ruel J-C, Gauthier S (2013) The effects of site characteristics on the landscape-level windthrow regime in the North shore region of Quebec, Canada. Forestry 86:159–171. doi:10.1093/forestry/cps061

    Article  Google Scholar 

  • Wan H, Wang XL, Swail VR (2010) Homogenization and trend analysis of Canadian near-surface wind speeds. J Clim 23:1209–1225. doi:10.1175/2009JCLI3200.1

    Article  Google Scholar 

  • Zhang T (2005) Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev Geophys 43:RG4002. doi:10.1029/2004RG000157

    Google Scholar 

Download references

Acknowledgements

We thank the Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER) of the Université du Québec à Montréal (UQAM) for providing the outputs of all the simulations and climate databases used in our study, with special thanks to Katja Winger for the information provided regarding CRCM5 and to Guillaume Dueymes for helping with the preparation of NARR and CRCM5 data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Boulanger.

Electronic supplementary material

ESM 1

(PDF 170 kb)

ESM 2

(DOCX 99 kb)

ESM 3

(PDF 461 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saad, C., Boulanger, Y., Beaudet, M. et al. Potential impact of climate change on the risk of windthrow in eastern Canada’s forests. Climatic Change 143, 487–501 (2017). https://doi.org/10.1007/s10584-017-1995-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-017-1995-z