Skip to main content

Advertisement

Log in

Is the future of large shallow lakes blue-green? Comparing the response of a catchment-lake model chain to climate predictions

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

We constructed a model chain into which regional climate-related variables (air temperature, precipitation) and a lake’s main tributary hydrological indicators (river flow, dissolved inorganic carbon) were employed for predicting the evolution of planktonic blue-green algae (cyanobacteria) and zooplankton (rotifer) biomass in that lake for the mid-21st century. Simulations were based on the future climate predicted under both the Representative Concentration Pathways 4.5 and 8.5 scenarios which, combined with three realistic policy-making and basin land-use evolution lead to six scenarios for future water quality. Model outputs revealed that mean annual river flow is expected to decline between 3 and 20%, depending on the scenario. Concentration of river dissolved inorganic carbon is predicted to follow the opposite trend and might soar up to twice the 2005–2014 average concentration. Lake planktonic primary producers will display quantitative changes in the future decades whereas zooplankters will not. A 2 to 10% increase in mean cyanobacteria biomass is accompanied by a stagnation (−3 to +2%) of rotifer biomass. Changes in cyanobacteria and rotifer phenology are expected: a surge of cyanobacteria biomass in winter and a shortening of the rotifer biomass spring peak. The expected quantitative changes on the biota were magnified in those scenarios where forested area conversions to cropland and water abstraction were the greatest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2

Similar content being viewed by others

References

  • Adrian R, Walz N, Hintze T, Hoeg S, Rusche R (1999) Effects of ice duration on plankton succession during spring in a shallow polymictic lake. Freshwat Biol 41:621–634

    Article  Google Scholar 

  • Barnes RT, Raymond PA (2009) The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chem Geol 266:318–327

    Article  Google Scholar 

  • Cheung MY, Liang S, Lee J (2013) Toxin-producing cyanobacteria in freshwater: a review of the problems, impact on drinking water safety, and efforts for protecting public health. J Microbiol 51:1–10

    Article  Google Scholar 

  • Core Team R (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/. ISBN 3-900051-07-0

    Google Scholar 

  • Couture R-M, Tominaga K, Starrfelt J, Moe SJ, Kaste O, Wright RF (2014) Modelling phosphorus loading and algal blooms in a Nordic agricultural catchment-lake system under changing land-use and climate. Env Sci Process Impact 16:1588–1599

    Article  Google Scholar 

  • Cremona F, Kõiv T, Kisand V, Laas A, Zingel P, Agasild H, Feldmann T, Järvalt A, Nõges P, Nõges T (2014a) From Bacteria to Piscivorous Fish: Estimates of Whole-Lake and Component-Specific Metabolism with an Ecosystem Approach. PLoS One 9, e101845

  • Cremona F, Kõiv T, Nõges P, Pall P, Rõõm E-I, Feldmann T, Viik M, Nõges T (2014b) Dynamic carbon budget of a large shallow lake assessed by a mass balance approach. Hydrobiologia 731:109–123

  • Cremona F, Laas A, Arvola L, Pierson D, Nõges P, Nõges T (2016) Numerical exploration of the planktonic to benthic primary production ratios in lakes of the Baltic Sea catchment. Ecosystems. doi:10.1007/s10021-016-0006-y

    Google Scholar 

  • de Wit HA, Ledesma JLJ, Futter MN (2016) Aquatic DOC export from subarctic Atlantic blanket bog in Norway is controlled by seasalt deposition, temperature and precipitation. Biogeochemistry 127:305–321

    Article  Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813

    Article  Google Scholar 

  • Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27:1547–1578

    Article  Google Scholar 

  • Futter MN, de Wit HA (2008) Testing seasonal and long-term controls of streamwater DOC using empirical and process-based models. Sci Total Environ 407:698–707

    Article  Google Scholar 

  • Futter MN, Butterfield D, Cosby BJ, Dillon PJ, Wade AJ, Whitehead PG (2007) Modeling the mechanisms that control in-stream dissolved organic carbon dynamics in upland and forested catchments. Water Resour Res 43:1–16

    Article  Google Scholar 

  • Futter MN, Erlandsson MA, Butterfield D, Whitehead PG, Oni SK, Wade AJ (2014) PERSiST: the precipitation, evapotranspiration and runoff simulator for solute transport. Hydrol Earth Syst Sci 18:855–873

    Article  Google Scholar 

  • Gyllström M, Hansson LA, Jeppesen E, Criado FG, Gross E, Irvine K, Kairesalo T, Kornijow R, Miracle MR, Nykänen M, Nõges T, Romo S, Stephen D, Van Donk E, Moss B (2005) The role of climate in shaping zooplankton communities of shallow lakes. Limnol Oceanogr 50:2008–2021

    Article  Google Scholar 

  • Haberman J, Virro T (2004) Zooplankton. In: Haberman J, Pihu E, Raukas A (eds) Lake Võrtsjärv. Estonian Encyclopedia Publishers, Tallinn

    Google Scholar 

  • Hempel S, Frieler K, Warszawski L, Schewe J, Piontek F (2013) A trend-preserving bias correction - the ISI-MIP approach. Earth Syst Dynam 4:219–236

    Article  Google Scholar 

  • Hering D et al (2015) Managing aquatic ecosystems and water resources under multiple stress-an introduction to the MARS project. Sci Total Environ 503–504:10–21

    Article  Google Scholar 

  • IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

    Google Scholar 

  • Jeppesen E, Meerhoff M, Davidson TA, Trolle D, Søndergaard M, Lauridsen TL, Beklioglu M, Brucet S, Volta P, Gonzalez-Bergonzoni I, Nielsen A (2014) Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. J Limnol 73:88–111

    Article  Google Scholar 

  • Jeppesen E, Brucet S, Naselli-Flores L, Papastergiadou E, Stefanidis K, Nõges T, Nõges P, Attayde JL, Zohary T, Coppens J, Bucak T, Rosemberg FM, Sousa Freitas FR, Kernan M, Søndergaard M, Beklioglu M (2015) Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750:201–227

    Article  Google Scholar 

  • Kaste Ø, Wright RF, Barkved LJ, Bjerkeng B, Engen-Skaugen T, Magnusson J, Sælthun NR (2006) Linked models to assess the impacts of climate change on nitrogen in a Norwegian river basin and fjord system. Sci Total Environ 365:200–222

    Article  Google Scholar 

  • Kosten S, Huszar VL, Bécares E, Costa LS, Donk E, Hansson LA, Jeppesen E, Kruk C, Lacerot G, Mazzeo N, De Meester L, Moss B, Lürling M, Nõges T, Romo S, Scheffer M (2012) Warmer climates boost cyanobacterial dominance in shallow lakes. Glob Change Biol 18:118–126

    Article  Google Scholar 

  • Kriegler E, O’Neill BC, Hallegatte S, Kram T, Lempert R, Moss R, Wilbanks T (2012) The need for and use of socio-economic scenarios for climate change analysis: a new approach based on shared socioeconomic pathways. Glob Environ Change 22:807–822

    Article  Google Scholar 

  • Ledesma JLJ, Köhler SJ, Futter MN (2012) Long-term dynamics of dissolved organic carbon: implications for drinking water supply. Sci Total Environ 432:1–11

    Article  Google Scholar 

  • Malmaeus JM, Blenckner T, Markensten H, Persson I (2006) Lake phosphorus dynamics and climate warming: a mechanistic model approach. Ecol Model 190:1–14

    Article  Google Scholar 

  • MARS project (2015) Report task 2.6: definition of future scenarios., p 77

    Google Scholar 

  • Moe SJ, Haande S, Couture R-M (2016) Climate change, cyanobacteria blooms and ecological status of lakes: a Bayesian network approach. Ecol Model 337:330–347. doi:10.1016/j.ecolmodel.2016.07.004

    Article  Google Scholar 

  • Mooij WM, Hülsmann S, De Senerpont Domis LN, Nolet BA, Bodelier PLE, Boers PCM, Dionisio Pires LM, Gons HJ, Ibelings BW, Noordhuis R, Portielje R, Wolfstein K, Lammens EHRR (2005) The impact of climate change on lakes in the Netherlands: a review. Aquat Ecol 39:381–400

    Article  Google Scholar 

  • Nõges T, Nõges P, Laugaste R (2003) Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake. Hydrobiologia 506:257–263

    Article  Google Scholar 

  • Nõges P, Nõges T, Laas A (2010) Climate-related changes of phytoplankton seasonality in large shallow Lake Võrtsjärv, Estonia. Aquat Ecosyst Health 13:154–163

    Article  Google Scholar 

  • Nõges P, Argillier C, Borja Á, Garmendia JM, Hanganu J, Kodeš V, Pletterbauer F, Sagouis A, Birk S (2016a) Quantified biotic and abiotic responses to multiple stress in freshwater, marine and ground waters. Sci Total Environ 540:43–52

  • Nõges T, Järvalt A, Haberman J, Zingel P, Nõges P (2016b) Is fish able to regulate filamentous blue-green dominated phytoplankton? Hydrobiologia, 1–11. DOI: 10.1007/s10750-016-2849-9

  • O’Reilly CM et al (2015) Rapid and highly variable warming of lake surface waters around the globe. Geophys Res Lett 42. doi:10.1002/2015GL066235

  • Pall P, Vilbaste S, Kõiv T, Kõrs A, Käiro K, Laas A, Nõges P, Nõges T, Piirsoo K, Toomsalu L, Viik M (2011) Fluxes of carbon and nutrients through the inflows and outflow of Lake Võrtsjärv, Estonia. Est J Ecol 60:39–53

    Article  Google Scholar 

  • Shrestha M (2015) Data analysis relied on Linear Scaling bias correction (V.1.0) Microsoft Excel file

    Google Scholar 

  • van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31

    Article  Google Scholar 

  • van Vuuren DP, Kriegler E, O’Neill BC, Ebi KL, Riahi K, Carter TR, Edmonds J, Hallegatte S, Kram T, Mathur M, Winkler (2014) A new scenario framework for climate change research: scenario matrix architecture. Clim Change 122:373–386. doi:10.1007/s10584-013-0906-1

    Article  Google Scholar 

  • Warszawski L, Frieler K, Huber V, Piontek F, Serdeczny O, Schewe J (2014) The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): project framework. Proc Natl Acad Sci U S A 111:3228–3232

    Article  Google Scholar 

  • Weyhenmeyer GA, Meili M, Livingstone DM (2004) Nonlinear temperature response of lake ice breakup. Geophys Res Lett 31:ᅟ. doi:10.1029/2004GL019530

    Article  Google Scholar 

  • Whitehead PG, Futter MN, Wilby R (2006) Impacts of climate change on hydrology, nitrogen and carbon in upland and lowland streams: assessment of adaptation strategies to meet Water Framework Directive Objectives. BHS 9th National Hydrology Symposium, Durham

    Google Scholar 

  • Zingel P, Haberman J (2008) A comparison of zooplankton densities and biomass in Lakes Peipsi and Võrtsjärv (Estonia): rotifers and crustaceans versus ciliates. Hydrobiologia 599:153–159

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Katri Rankinen (Finnish Environment Institute) for providing copies of the INCA-C and PERSiST executable, Alo Laas (Estonian University of Life Sciences) and Ivo Saaremäe (Estonian Environment Agency) for assistance in data collection. Cayetano Gutierrez (Cardiff University) was very helpful with the empirical modelling process. RMC acknowledges funding from the Norwegian Research Council project “Lakes in Transition” (244558). This research was supported by Start-Up Personal Research Grant PUT 777 to FC and IUT 21–2 of the Estonian Ministry of Education and Research, and by MARS project (managing aquatic ecosystems and water resources under multiple Stress) funded under the 7th EU Framework Programme, Theme 6 (Environment including Climate Change), Contract No.: 603378 (http://www.mars-project.eu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Cremona.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cremona, F., Vilbaste, S., Couture, RM. et al. Is the future of large shallow lakes blue-green? Comparing the response of a catchment-lake model chain to climate predictions. Climatic Change 141, 347–361 (2017). https://doi.org/10.1007/s10584-016-1894-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-016-1894-8

Keywords

Navigation