Climatic Change

, Volume 141, Issue 3, pp 401–417 | Cite as

An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river basins

  • S. Eisner
  • M. Flörke
  • A. Chamorro
  • P. Daggupati
  • C. Donnelly
  • J. Huang
  • Y. Hundecha
  • H. Koch
  • A. Kalugin
  • I. Krylenko
  • V. Mishra
  • M. Piniewski
  • L. Samaniego
  • O. Seidou
  • M. Wallner
  • V. Krysanova
Article

Abstract

The paper investigates climate change impacts on streamflow seasonality for a set of eleven representative large river basins covering all continents and a wide range of climatic and physiographic settings. Based on an ensemble of nine regional hydrological models driven by climate projections derived from five global circulation models under four representative concentration pathways, we analyzed the median and range of projected changes in seasonal streamflow by the end of the twenty-first century and examined the uncertainty arising from the different members of the modelling chain. Climate change impacts on the timing of seasonal streamflow were found to be small except for two basins. In many basins, we found an acceleration of the existing seasonality pattern, i.e. high-flows are projected to increase and/or low-flows are projected to decrease. In some basins the hydrologic projections indicate opposite directions of change which cancel out in the ensemble median, i.e., no robust conclusions could be drawn. In the majority of the basins, differences in projected streamflow seasonality between the low emission pathway and the high emission pathway are small with the exception of four basins. For these basins our results allow conclusions on the potential benefits (or adverse effects) of avoided GHG emissions for the seasonal streamflow regime.

References

  1. Addor N, Rössler O, Köplin N et al (2014) Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments. Water Resour Res 50:7541–7562. doi:10.1002/2014WR015549
  2. Aich V, Liersch S, Vetter T et al (2014) Comparing impacts of climate change on streamflow in four large African river basins. Hydrol Earth Syst Sci 18:1305–1321. doi:10.5194/hess-18-1305-2014 CrossRefGoogle Scholar
  3. Arnell NW, Gosling SN (2013) The impacts of climate change on river flow regimes at the global scale. J Hydrol. doi:10.1016/j.jhydrol.2013.02.010 Google Scholar
  4. Arnell N, Lloyd-Hughes B (2014) The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios. Clim Chang 122:127–140. doi:10.1007/s10584-013-0948-4 CrossRefGoogle Scholar
  5. Arrigoni AS, Greenwood MC, Moore JN (2010) Relative impact of anthropogenic modifications versus climate change on the natural flow regimes of rivers in the northern Rocky Mountains, United States. Water Resour Res 46:W12542. doi:10.1029/2010WR009162 CrossRefGoogle Scholar
  6. Beldring S, Engen-Skaugen T, Førland EJ, Roald LA (2008) Climate change impacts on hydrological processes in Norway based on two methods for transferring regional climate model results to meteorological station sites. Tellus, Ser A Dyn Meteorol Oceanogr 60 A:439–450. doi:10.1111/j.1600–0870.2008.00306.xGoogle Scholar
  7. Biasutti M, Sobel AH (2009) Delayed Sahel rainfall and global seasonal cycle in a warmer climate. Geophys Res Lett. doi:10.1029/2009GL041303 Google Scholar
  8. Bierkens MFP (2015) Global hydrology 2015: state, trends, and directions. Water Resour Res 51:4923–4947. doi:10.1002/2015WR017173 CrossRefGoogle Scholar
  9. Cornelissen T, Diekkrüger B, Giertz S (2013) A comparison of hydrological models for assessing the impact of land use and climate change on discharge in a tropical catchment. J Hydrol 498:221–236. doi:10.1016/j.jhydrol.2013.06.016 CrossRefGoogle Scholar
  10. Dettinger MD, Diaz HF (2000) Global characteristics of stream flow seasonality and variability. J Hydrometeorol 1:289–310. doi:10.1175/1525-7541(2000)001<0289:GCOSFS>2.0.CO;2 CrossRefGoogle Scholar
  11. Döll P, Fiedler K, Zhang J (2009) Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol Earth Syst Sci 13:2413–2432. doi:10.5194/hessd-6-4773-2009 CrossRefGoogle Scholar
  12. Gelfan A, Gustafsson D, Motovilov Y et al (2016) Climate change impact on water regime of great Arctic rivers: modeling and uncertainty issues. Clim Chang. doi:10.1007/s10584-016-1710-5 Google Scholar
  13. Greuell W, Andersson JCM, Donnelly C et al (2015) Evaluation of five hydrological models across Europe and their suitability for making projections under climate change. Hydrol Earth Syst Sci Discuss 12:10289–10330. doi:10.5194/hessd-12-10289-2015 CrossRefGoogle Scholar
  14. Grill G, Lehner B, Lumsdon AE et al (2015) An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ Res Lett 10:15001. doi:10.1088/1748-9326/10/1/015001 CrossRefGoogle Scholar
  15. Haddeland I, Heinke J, Biemans H et al (2014) Global water resources affected by human interventions and climate change. Proc Natl Acad Sci U S A 111:3251–3256. doi:10.1073/pnas.1222475110 CrossRefGoogle Scholar
  16. Hagemann S, Chen C, Clark DB et al (2013) Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth Syst Dyn 4:129–144. doi:10.5194/esd-4-129-2013 CrossRefGoogle Scholar
  17. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1095–1107. doi:10.1175/2009BAMS2607.1 CrossRefGoogle Scholar
  18. Hempel S, Frieler K, Warszawski L et al (2013) A trend-preserving bias correction &ndash; the ISI-MIP approach. Earth Syst Dynam 4:219–236. doi:10.5194/esd-4-219-2013 CrossRefGoogle Scholar
  19. Huang S, Kumar R, Flörke M et al (2016) Evaluation of an ensemble of regional hydrological models in 12 large-scale river basins worldwide. Climatic Change. doi:10.1007/s10584-016-1841-8
  20. Jung IW, Bae DH, Lee BJ (2013) Possible change in Korean streamflow seasonality based on multi-model climate projections. Hydrol Process 27:1033–1045. doi:10.1002/hyp.9215 CrossRefGoogle Scholar
  21. Krylenko I, Motovilov Y, Antokhina E et al (2015) Physically-based distributed modelling of river runoff under changing climate conditions. IAHS Publ 368:156–161. doi:10.5194/piahs-368-156-2015 CrossRefGoogle Scholar
  22. Lee J-Y, Wang B (2012) Future change of global monsoon in the CMIP5. Clim Dyn 42:101–119. doi:10.1007/s00382-012-1564-0 CrossRefGoogle Scholar
  23. Menon A, Levermann A, Schewe J et al (2013) Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models. Earth Syst Dyn 4:287–300. doi:10.5194/esd-4-287-2013 CrossRefGoogle Scholar
  24. Morán-Tejeda E, Lorenzo-Lacruz J, López-Moreno JI et al (2014) Streamflow timing of mountain rivers in Spain: recent changes and future projections. J Hydrol 517:1114–1127. doi:10.1016/j.jhydrol.2014.06.053 CrossRefGoogle Scholar
  25. Patricola CM, Cook KH (2010) Sub-Saharan northern African climate at the end of the twenty-first century: forcing factors and climate change processes. Clim Dyn 37:1165–1188. doi:10.1007/s00382-010-0907-y CrossRefGoogle Scholar
  26. Patterson LA, Lutz B, Doyle MW (2013) Climate and direct human contributions to changes in mean annual streamflow in the South Atlantic, USA. Water Resour Res 49:7278–7291. doi:10.1002/2013WR014618 CrossRefGoogle Scholar
  27. Prudhomme C, Giuntoli I, Robinson EL et al (2014) Hydrological droughts in the twenty-first century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc Natl Acad Sci U S A 111:3262–3267. doi:10.1073/pnas.1222473110 CrossRefGoogle Scholar
  28. Samaniego L, Kumar R, Breuer L et al (2016) Propagation of forcing and model uncertainties on to hydrological drought characteristics in a multi-model century-long experiment in large river basins. Climatic Change. doi:10.1007/s10584-016-1778-y
  29. Schewe J, Heinke J, Gerten D et al (2014) Multimodel assessment of water scarcity under climate change. Proc Natl Acad Sci U S A 111:3245–3250. doi:10.1073/pnas.1222460110 CrossRefGoogle Scholar
  30. Schneider C, Laizé CLR, Acreman MC, Flörke M (2013) How will climate change modify river flow regimes in Europe? Hydrol Earth Syst Sci 17:325–339. doi:10.5194/hess-17-325-2013 CrossRefGoogle Scholar
  31. Vano JA, Nijssen B, Lettenmaier DP (2015) Seasonal hydrologic responses to climate change in the Pacific northwest. Water Resour Res 51:1959–1976. doi:10.1002/2014WR015909 CrossRefGoogle Scholar
  32. Vetter T, Reinhardt J, Flörke M et al (2016) Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Climatic Change. doi:10.1007/s10584-016-1794-y
  33. Vetter T, Huang S, Aich V et al (2015) Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents. Earth Syst Dyn 6:17–43. doi:10.5194/esd-6-17-2015 CrossRefGoogle Scholar
  34. Wada Y, Wisser D, Eisner S et al (2013) Multimodel projections and uncertainties of irrigation water demand under climate change. Geophys Res Lett 40:4626–4632. doi:10.1002/grl.50686 CrossRefGoogle Scholar
  35. Walsh RP, Lawler DM (1981) Rainfall seasonality: description, spatial patterns and change through time. Weather 36:201–208. doi:10.1002/j.1477-8696.1981.tb05400.x
  36. Wang D, Hejazi M (2011) Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour Res. doi:10.1029/2010WR010283 Google Scholar
  37. Warszawski L, Frieler K, Huber V et al (2014) The inter-sectoral impact model intercomparison project (ISI-MIP): project framework. Proc Natl Acad Sci U S A 111:3228–3232. doi:10.1073/pnas.1312330110 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • S. Eisner
    • 1
    • 2
  • M. Flörke
    • 1
  • A. Chamorro
    • 3
  • P. Daggupati
    • 4
  • C. Donnelly
    • 5
  • J. Huang
    • 6
  • Y. Hundecha
    • 5
  • H. Koch
    • 7
  • A. Kalugin
    • 8
  • I. Krylenko
    • 8
    • 9
  • V. Mishra
    • 10
  • M. Piniewski
    • 7
    • 11
  • L. Samaniego
    • 12
  • O. Seidou
    • 13
  • M. Wallner
    • 14
  • V. Krysanova
    • 7
  1. 1.Center for Environmental Systems ResearchUniversity of KasselKasselGermany
  2. 2.Norwegian Institute of Bioeconomy ResearchÅsNorway
  3. 3.Institute of Landscape EcologyJustus Liebig UniversityGiessenGermany
  4. 4.School of EngineeringUniversity of GuelphGuelphCanada
  5. 5.Swedish Meteorological and Hydrological InstituteNorrköpingSweden
  6. 6.Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesXinjiangChina
  7. 7.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  8. 8.Water Problems Institute of RASMoscowRussia
  9. 9.Lomonosov Moscow State UniversityMoscowRussia
  10. 10.Civil EngineeringIndian Institute of Technology (IIT) GandhinagarGujaratIndia
  11. 11.Warsaw University of Life SciencesWarsawPoland
  12. 12.UFZ-Helmholtz Centre for Environmental ResearchLeipzigGermany
  13. 13.Department of Civil EngineeringUniversity of OttawaOttawaCanada
  14. 14.Federal Institute for Geosciences and Natural ResourcesHannoverGermany

Personalised recommendations