Advertisement

Climatic Change

, Volume 139, Issue 1, pp 37–54 | Cite as

Natural hazards in Australia: droughts

  • Anthony S. KiemEmail author
  • Fiona Johnson
  • Seth Westra
  • Albert van Dijk
  • Jason P. Evans
  • Alison O’Donnell
  • Alexandra Rouillard
  • Cameron Barr
  • Jonathan Tyler
  • Mark Thyer
  • Doerte Jakob
  • Fitsum Woldemeskel
  • Bellie Sivakumar
  • Raj Mehrotra
Article

Abstract

Droughts are a recurrent and natural part of the Australian hydroclimate, with evidence of drought dating back thousands of years. However, our ability to monitor, attribute, forecast and manage drought is exposed as insufficient whenever a drought occurs. This paper summarises what is known about drought hazard, as opposed to the impacts of drought, in Australia and finds that, unlike other hydroclimatic hazards, we currently have very limited ability to tell when a drought will begin or end. Understanding, defining, monitoring, forecasting and managing drought is also complex due to the variety of temporal and spatial scales at which drought occurs and the diverse direct and indirect causes and consequences of drought. We argue that to improve understanding and management of drought, three key research challenges should be targeted: (1) defining and monitoring drought characteristics (i.e. frequency, start, duration, magnitude, and spatial extent) to remove confusion between drought causes, impacts and risks and better distinguish between drought, aridity, and water scarcity due to over-extractions; (2) documenting historical (instrumental and pre-instrumental) variation in drought to better understand baseline drought characteristics, enable more rigorous identification and attribution of drought events or trends, inform/evaluate hydrological and climate modelling activities and give insights into possible future drought scenarios; (3) improving the prediction and projection of drought characteristics with seasonal to multidecadal lead times and including more realistic modelling of the multiple factors that cause (or contribute to) drought so that the impacts of natural variability and anthropogenic climate change are accounted for and the reliability of long-term drought projections increases.

Keywords

Drought Attribution Climate variability Climate change, palaeoclimate Water resources Hydrology 

Notes

Acknowledgments

This paper was a result of collaboration through the working group ‘Trends and Extremes’ as part of the Australian Water and Energy Exchanges Initiative (OzEWEX, www.ozewex.org). J. Evans was supported through Australian Research Council (ARC) Future Fellowship FT110100576. A. van Dijk was supported through ARC Discovery Project DP40103679. S. Westra and F. Johnson were supported through ARC Discovery Project DP150100411. J. Tyler was supported through ARC Discovery Project DP140104093. C. Barr was supported by ARC Discovery Project DP150103875. B. Sivakumar was supported through ARC Future Fellowship FT110100328.

Supplementary material

10584_2016_1798_MOESM1_ESM.docx (44 kb)
ESM 1 (DOCX 43.8 kb)

References

  1. AghaKouchak A, Farahmand A, Melton FS, Teixeira J, Anderson MC, Wardlow BD, Hain CR (2015) Remote sensing of drought: progress, challenges and opportunities. Rev Geophys 53:452–480. doi: 10.1002/2014RG000456 CrossRefGoogle Scholar
  2. Allen KJ, Nichols SC, Evans R, Cook ER, Allie S, Carson G, Ling F, Baker PJ (2015) Preliminary December-January inflow and streamflow reconstructions from tree rings for western Tasmania, southeastern Australia. Water Resour Res 51:5487–5503. doi: 10.1002/2015WR017062 CrossRefGoogle Scholar
  3. Asadi Zarch MA, Sivakumar B, Sharma A (2015) Droughts in a warming climate: a global assessment of standardized precipitation index (SPI) and reconnaissance drought index (RDI. J Hydrol 526:183–195. doi: 10.1016/j.jhydrol.2014.09.071 CrossRefGoogle Scholar
  4. Ault TR, Cole JE, Overpeck JT, Pederson GT, St George S, Otto-Bliesner B, Woodhouse CA, Deser C (2013) The continuum of hydroclimate variability in western North America during the last millennium. J Clim 26:5863–5878. doi: 10.1175/jcli-d-11-00732.1 CrossRefGoogle Scholar
  5. Bagley JE, Desai AR, Harding KJ, Snyder PK, Foley JA (2014) Drought and deforestation: has land cover change influenced recent precipitation extremes in the Amazon? J Clim 27:345–361. doi: 10.1175/JCLI-D-1112-00369.00361 CrossRefGoogle Scholar
  6. Barr C, Tibby J, Gell PG, Tyler JJ, Zawadzki A, Jacobsen G (2014) Climatic variability in southeastern Australia over the last 1500 years inferred from the high resolution diatom records of two crater lakes. Quat Sci Rev 95:115–131CrossRefGoogle Scholar
  7. Below R, Grover-Kopec E, Dilley M (2007) Documenting drought-related disasters: a global reassessment. J Environ Dev 16:328–344. doi: 10.1177/1070496507306222 CrossRefGoogle Scholar
  8. Blauhut V, Gudmundsson L, Stahl K (2015) Towards pan-European drought risk maps: quantifying the link between drought indices and reported drought impacts. Environ Res Lett 10:14008–14017. doi: 10.11088/11748–19326/14010/14001/014008 CrossRefGoogle Scholar
  9. Botterill LC, Cockfield G (eds) (2013) Drought, Risk management, and policy: Decision-making under uncertainty. Drought and water crises CRC Press, Taylor & Francis Group, 6000 Broken sound parkway NW, Suite 300, Boca Raton, Florida, USA 33487–2742Google Scholar
  10. Bradley RS (2015) Paleoclimatology: reconstructing climates of the quaternary, Third edn. Academic Press, OxfordGoogle Scholar
  11. Burrows MA, Fenner J, Haberle SG (2014) Humification in Northeast Australia: dating millennial and centennial scale climate variability in the late Holocene. The Holocene 24:1707–1718. doi: 10.1177/0959683614551216 CrossRefGoogle Scholar
  12. Cai W, Cowan T (2008) Evidence of impacts from rising temperature on inflows to the Murray-Darling Basin. Geophys Res Lett 35:L07701. doi: 10.01029/02008GL033390 CrossRefGoogle Scholar
  13. Cai W, Cowan T, Briggs P, Raupach M (2009) Rising temperature depletes soil moisture and exacerbates severe drought across Southeast Australia. Geophys Res Lett 36:L21709. doi: 10.21029/22009GL040334 CrossRefGoogle Scholar
  14. Cook ER, Anchukaitis KJ, Buckley BM, D’Arrigo RD, Jacoby GC, Wright WE (2010) Asian monsoon failure and megadrought during the last millennium. Science 328:486–489CrossRefGoogle Scholar
  15. Crosbie RS, McCallum JL, Walker GR, Chiew FHS (2011) Episodic recharge and climate change in the Murray-Darling Basin, Australia. Hydrogeol J 20:245–261. doi: 10.07/s10040-10011-10804-10044 CrossRefGoogle Scholar
  16. CSIRO (2012) Climate and water availability in south-eastern Australia: A synthesis of findings from Phase 2 of the South Eastern Australian Climate Initiative (SEACI), CSIRO, Australia, September 2012, 41 ppGoogle Scholar
  17. CSIRO and Bureau of Meteorology (2015) Climate change in Australia projections for Australia’s NRM Regions: Technical report, CSIRO and Bureau of Meteorology, Australia. http://www.climatechangeinaustralia.gov.au/en/publications-library/technical-report/
  18. D’Arrigo R, Baker P, Palmer J, Anchukaitis K, Cook G (2008) Experimental reconstruction of monsoon drought variability for Australasia using tree rings and corals. Geophys Res Lett 35:1–6Google Scholar
  19. Donohue RJ, McVicar TR, Roderick ML (2010) Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. J Hydrol 386:186–197CrossRefGoogle Scholar
  20. Evans R (2007) The Impact of Groundwater Use on Australia’s Rivers - Exploring the technical, management and policy challenges. Land & Water Australia Senior Research Fellowship Report, Land & Water AustraliaGoogle Scholar
  21. Fierro AO, Leslie LM (2013) Links between central west western Australian rainfall variability and large-scale climate drivers. J Clim 26:2222–2246. doi: 10.1175/JCLI-D-2212-00129.00121 CrossRefGoogle Scholar
  22. Gallant AJE, Karoly DJ (2009) The atypical influence of the 2007 La Niña on rainfall and temperature in southeastern Australia. Geophys Res Lett 36:L14707. doi: 10.11029/12009GL039026 CrossRefGoogle Scholar
  23. Gallant AJE, Kiem AS, Verdon-Kidd DC, Stone RC, Karoly DJ (2012) Understanding hydroclimate processes in the Murray-Darling Basin for natural resources management. Hydrol Earth Syst Sci 16:2049–2068. doi: 10.5194/hess-2016-2049-2012 CrossRefGoogle Scholar
  24. Garner G, Van Loon AF, Prudhomme C, Hannah DM (2015) Hydroclimatology of extreme river flows. Freshw Biol 60:2461–2476. doi: 10.1111/fwb.12667 CrossRefGoogle Scholar
  25. Gergis J, Ashcroft L (2013) Rainfall variations in South-Eastern Australia part 2: a comparison of documentary, early instrumental and palaeoclimate records, 1788–2008. Int J Climatol 33:2973–2987CrossRefGoogle Scholar
  26. Gouramanis C, Dodson J, Wilkins D, De Deckker P, Chase BM (2012) Holocene palaeoclimate and sea level fluctuation recorded from the coastal barker swamp, Rottnest Island, South-Western Western Australia. Quat Sci Rev 54:40–57. doi: 10.1016/j.quascirev.2012.1005.1007 CrossRefGoogle Scholar
  27. Henley BJ, Thyer MA, Kuczera G, Franks SW (2011) Climate-informed stochastic hydrological modeling: incorporating decadal-scale variability using paleo data. Water Resour Res 47:W11509. doi: 10.11029/12010wr01003 CrossRefGoogle Scholar
  28. Ho M, Verdon-Kidd DC, Kiem AS, Drysdale RN (2014) Broadening the spatial applicability of paleoclimate information – a case-study for the Murray-Darling Basin, Australia. J Clim 27:2477–2495. doi: 10.1175/JCLI-D-2413-00071.00071 CrossRefGoogle Scholar
  29. Ho M, Kiem AS, Verdon-Kidd DC (2015a) A paleoclimate rainfall reconstruction in the Murray-Darling Basin (MDB), Australia: 1. Evaluation of different paleoclimate archives, rainfall networks and reconstruction techniques. Water Resour Res 51. doi: 10.1002/2015WR017058
  30. Ho M, Kiem AS, Verdon-Kidd DC (2015b) A paleoclimate rainfall reconstruction in the Murray-Darling Basin (MDB), Australia: 2. Assessing hydroclimatic risk using preinstrumental information on wet and dry epochs. Water Resour Res 51. doi: 10.1002/2015WR017059
  31. Hobbins MT, Dai A, Roderick ML, Farquhar GD (2008) Revisting the parameterization of potential evaporation as a driver of long-term water balance trends. Geophys Res Lett 35:L12403CrossRefGoogle Scholar
  32. Johnson F, Sharma A (2010) A comparison of Australian open water body evaporation trends for current and future climates estimated from class A evaporation pans and general circulation models. J Hydrometeorol 11:105–121CrossRefGoogle Scholar
  33. Johnson F, White CJ, van Dijk A, Ekstrom M, Evans JP, Jakob D, Kiem AS, Leonard M, Rouillard A, Westra S (2016) Natural hazards in Australia: floods. Climatic Change doi: 10.1007/s10584-016-1689-y
  34. Karoly DJ, Risbey JS, Reynolds A (2003) Global warming contributes to Australia’s worst drought: climate change. WWF AustraliaGoogle Scholar
  35. Kiem AS (2013) Drought and water policy in Australia: challenges for the future illustrated by the issues associated with water trading and climate change adaptation in the Murray-Darling Basin. Glob Environ Chang 23:1615–1626. doi: 10.1016/j.gloenvcha.2013.1609.1006 CrossRefGoogle Scholar
  36. Kiem AS, Austin EK (2013) Drought and the future of rural communities: opportunities and challenges for climate change adaptation in regional Victoria, Australia. Glob Environ Chang 23:1307–1316. doi: 10.1016/j.gloenvcha.2013.1306.1003 CrossRefGoogle Scholar
  37. Kiem AS, Franks SW (2004) Multi-decadal variability of drought risk - eastern Australia. Hydrol Process 18:2039–2050CrossRefGoogle Scholar
  38. Kiem AS, Verdon-Kidd DC (2010) Towards understanding hydroclimatic change in Victoria, Australia – preliminary insights into the “big dry”. Hydrol Earth Syst Sci 14:433–445, www.hydrol-earth-syst-sci.net/414/433/2010/Google Scholar
  39. Kiem AS, Verdon-Kidd DC (2011) Steps towards ‘useful’ hydroclimatic scenarios for water resource management in the Murray-Darling Basin. Water Resour Res 47:W00G06. doi: 10.1029/2010WR009803 CrossRefGoogle Scholar
  40. Kirono DGC, Jones RN, Cleugh HA (2008) Pan-evaporation measurement and Morton-point potential evaporation estimates in Australia: are their trends the same? Int J Climatol 29:711–718CrossRefGoogle Scholar
  41. Kirono DGC, Kent DM, Hennessy KJ, Mpelasoka F (2011) Characterstics of Australian droughts under enhanced greenhouse conditions: results from 14 global climate models. J Arid Environ 75:566–575CrossRefGoogle Scholar
  42. Lockart N, Kavetski D, Franks SW (2009) On the recent warming in the Murray-Darling Basin: land-surface interactions misunderstood. Geophys Res Lett 36:L24405. doi: 10.21029/22009GL040598 CrossRefGoogle Scholar
  43. Marx SK, McGowan HA, Kamber BS (2009) Long-range dust transport from eastern Australia: a proxy for Holocene aridity and ENSO-type climate variability. Earth Planet Sci Lett 282:167–177. doi: 10.1016/j.epsl.2009.1003.1013 CrossRefGoogle Scholar
  44. Masih I, Maskey S, Mussá FEF, Trambauer P (2014) A review of droughts on the African continent: a geospatial and long-term perspective. Hydrol Earth Syst Sci 18:–3649. doi: 10.5194/hess-3618-3635-2014
  45. McGowan H, Marx S, Moss P, Hammond A (2012) Evidence of ENSO mega-drought triggered collapse of prehistory aboriginal society in Northwest Australia. Geophys Res Lett 39:1–5Google Scholar
  46. McGrath GS, Sadler R, Fleming K, Tregoning P, Hinz C, Veneklaas EJ (2012) Tropical cyclones and the ecohydrology of Australia’s recent continental-scale drought. Geophys Res Lett 39:1–16Google Scholar
  47. McKernan M (2005) Drought: The Red Marauder. Allen & Unwin, Crows NestGoogle Scholar
  48. McMahon TA, Kiem AS, Peel MC, Jordan PW, Pegram GGS (2008) A new approach to stochastically generating six-monthly rainfall sequences based on empirical model decomposition. J Hydrometeorol 9:1377–1389CrossRefGoogle Scholar
  49. McVicar TR, Roderick ML, Donohue RJ, Van Niel TG (2012) Less bluster ahead? Ecohydrological implications of global trends of terrestrial near-surface wind speeds. Ecohydrology 5:381–388. doi: 10.1002/eco.1298 CrossRefGoogle Scholar
  50. Mitchell PJ, Benyon RG, Lane PNJ (2012) Responses of evapotranspiration at different topographic positions and catchment water balance following a pronounced drought in a mixed species eucalypt forest, Australia. J Hydrol 440–441:62–74. doi: 10.1016/j.jhydrol.2012.1003.1026 CrossRefGoogle Scholar
  51. Murphy BF, Timbal B (2008) A review of recent climate variability and climate change in southeastern Australia. Int J Climatol 28:859–879CrossRefGoogle Scholar
  52. Neukom R, Gergis J (2012) Southern hemisphere high-resolution palaeoclimate records of the last 2000 years. The Holocene 22:501–524CrossRefGoogle Scholar
  53. Nicholls N (2004) The changing nature of Australian droughts. Clim Chang 63:323–336CrossRefGoogle Scholar
  54. O’Donnell AJ, Cook ER, Palmer JG, Turney CSM, Page GFM, Grierson PF (2015) Tree rings show recent high summer-autumn precipitation in Northwest Australia is unprecedented within the last two centuries. PLOS ONE 10:doi: 10.1371/journal.pone.0128533
  55. Orlowsky B, Seneviratne SI (2013) Elusive drought: uncertainty in observed trends and short-and long-term CMIP5 projections. Hydrol Earth Syst Sci 17:1765–1781CrossRefGoogle Scholar
  56. Palmer JG, Cook ER, Turney CSM, Allen KJ, Fenwick P, Cook BI, O’Donnell A, Lough J, Grierson PF, Baker P (2015) Drought variability in the eastern Australia and New Zealand summer drought atlas (ANZDA, CE 1500-2012) modulated by the Interdecadal Pacific oscillation. Environ Res Lett 10Google Scholar
  57. Parry S, Wilby RL, Prudhomme C, Wood PJ (2016) A systematic assessment of drought termination in the United Kingdom. Hydrol Earth Syst Sci Discuss 2016:1–33. doi: 10.5194/hess-2015-5476 CrossRefGoogle Scholar
  58. Perkins-Kirkpatrick SE, White CJ, Alexander LV, Argüeso D, Boschat G, Cowan T, Evans JP, Ekström M, Oliver ECJ, Phatak A, Purich A (2016) Natural hazards in Australia: heatwaves. Climatic Change 1–14. doi: 10.1007/s10584-016-1650-0
  59. Peterson TC et al. (2013) Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: state of knowledge. Bull Am Meteorol Soc 94:821–834. doi: 10.1175/BAMS-D-1112-00066.00061 CrossRefGoogle Scholar
  60. Rahmat SN (2014) Methodology for Development of Drought Severity-Duration-Frequency (SDF) Curves. PhD Thesis. RMIT University, MelbourneGoogle Scholar
  61. Rajah K, O’Leary T, Turner A, Petrakis G, Leonard M, Westra S (2014) Changes to the temporal distribution of daily precipitation. Geophys Res Lett 41. doi: 10.1002/2014GL062156
  62. Risbey JS, Pook MJ, McIntosh PC, Wheeler MC, Hendon HH (2009) On the remote drivers of rainfall variability in Australia. Mon Weather Rev 137:3233–3253. doi: 10.1175/2009MWR2861.3231 CrossRefGoogle Scholar
  63. Roderick ML, Farquhar GD (2002) The cause of decreased pan evaporation over the past 50 years. Science 298:1410–1411Google Scholar
  64. Roderick ML, Farquhar GD (2004) Changes in Australian pan evaporation from 1970 to 2002. Int J Climatol 24:1077–1090. doi: 10.10.1002/joc.1061 CrossRefGoogle Scholar
  65. Roderick ML, Rotstayn LD, Farquhar GD, Hobbins MT (2007) On the attribution of changing pan evaporation. Geophys Res Lett 34. doi: 10.1029/2007gl031166
  66. Rouillard A, Skrzypek G, Dogramaci S, Turney C, Grierson PF (2015) Impacts of high inter-annual variability of rainfall on a century of extreme hydrologic regime of Northwest Australia. Hydrol Earth Syst Sci 19:2057–2078CrossRefGoogle Scholar
  67. Rouillard A, Skrzypek G, Turney C, Dogramaci S, Hua Q, Zawadzki A, Reeves J, Greenwood P, O’Donnell AJ, Grierson PF (2016) Evidence for extreme floods in arid subtropical Northwest Australia during the little ice age chronozone (CE 1400–1850. Quat Sci Rev 144:107–122. doi: 10.1016/j.quascirev.2016.1005.1004 CrossRefGoogle Scholar
  68. Sharples JJ, Cary G, Fox-Hughes P, Mooney S, Evans JP, Fletcher M, Fromm M, Baker P, Grierson P, McRae R (2016) Natural hazards in Australia: extreme bushfire. Climatic Change. Accepted 3 Sept 2016Google Scholar
  69. Sheffield J, Wood EF (2011) Drought: Past Problems and Future Scenarios. Earthscan, UK, p. 192Google Scholar
  70. Sheffield J, Andreadis KM, Wood EF, Lettenmaier DP (2009) Global and continental drought in the second half of the twentieth century: severity-area-duration analysis and temporal variability of large-scale events. J Clim 22:1962–1981CrossRefGoogle Scholar
  71. Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491:435–438CrossRefGoogle Scholar
  72. Tallaksen LM, van Lanen HAJ (2004) Hydrological drought - processes and estimation methods for streamflow and groundwater. Dev water Sci 48 :579Elsevier ScienceGoogle Scholar
  73. Teuling AJ, Van Loon AF, Seneviratne SI, Lehner I, Aubinet M, Heinesch B, Bernhofer C, Grünwald T, Prasse H, Spank U (2013) Evapotranspiration amplifies European summer drought. Geophys Res Lett 40:2071–2075CrossRefGoogle Scholar
  74. Thornthwaite (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94CrossRefGoogle Scholar
  75. Thyer MA, Frost AJ, Kuczera G (2006) Parameter estimation and model identification for stochastic models of annual hydrological data: is the observed record long enough? J Hydrol 330:313–328. doi: 10.1016/j.jhydrol.2006.1003.1029 CrossRefGoogle Scholar
  76. Tozer CR, Vance TR, Roberts JL, Kiem AS, Curran MAJ, Moy AD (2016) An ice core derived 1013-year catchment-scale annual rainfall reconstruction in subtropical eastern Australia. Hydrol Earth Syst Sci 20:1703–1717. doi: 10.5194/hess-1720-1703-2016 CrossRefGoogle Scholar
  77. Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Chang 4:17–22CrossRefGoogle Scholar
  78. Tyler JJ, Mills K, Barr C, Sniderman JMK, Gell PG, Karoly DJ (2015) Identifying coherent patterns of environmental change between multiple, multivariate records: an application to four 1000-year diatom records from Victoria, Australia. Quat Sci Rev 119:94–105CrossRefGoogle Scholar
  79. Ummenhofer CC, England MH, McIntosh PC, Meyers GA, Pook MJ, Risbey JS, Sen Gupta A, Taschetto AS (2009a) What causes Southeast Australia’s worst droughts? Geophys Res Lett 36:L04706. doi: 10.01029/02008GL036801 CrossRefGoogle Scholar
  80. Ummenhofer CC, Sen Gupta A, Taschetto AS, England MH (2009b) Modulation of Australian precipitation by meridional gradients in East Indian Ocean Sea surface temperatures. J Clim 22:5597–5610CrossRefGoogle Scholar
  81. van Dijk AIJM, Beck HE, Crosbie RS, de Jeu RAM, Liu YY, Podger GM, Timbal B, Viney NR (2013) The millennium drought in Southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy and society. Water Resour Res 49:1–18CrossRefGoogle Scholar
  82. Van Loon AF (2015) Hydrological drought explained. WIREs Water 2:359–392. doi: 10.1002/wat1002.1085 CrossRefGoogle Scholar
  83. Van Loon AF et al. (2016a) Drought in the Anthropocene. Nat Geosci 9:89–91. doi: 10.1038/ngeo2646 CrossRefGoogle Scholar
  84. Van Loon AF et al. (2016b) Drought in a human-modified world: reframing drought definitions, understanding and analysis approaches. Hydrol Earth Syst Sci Discuss 2016:1–34. doi: 10.5194/hess-2016-5251 CrossRefGoogle Scholar
  85. Vance TR, van Ommen TD, Curran MAJ, Plummer CT, Moy AD (2013) A millennial proxy record of ENSO and eastern Australian rainfall from the law dome ice Core, East Antarctica. J Clim 26:710–725. doi: 10.1175/jcli-d-12-00003.1 CrossRefGoogle Scholar
  86. Vance TR, Roberts JL, Plummer CT, Kiem AS, van Ommen TD (2015) Interdecadal Pacific variability and eastern Australian mega-droughts over the last millennium. Geophys Res Lett 42:129–137. doi: 10.1002/2014GL062447 CrossRefGoogle Scholar
  87. Verdon DC, Franks SW (2005) Indian Ocean Sea surface temperature variability and winter rainfall: eastern Australia. Water Resour Res 41:W09413. doi: 10.01029/02004WR003845 CrossRefGoogle Scholar
  88. Verdon DC, Franks SW (2006) Long-term behaviour of ENSO – interactions with the PDO over the past 400 years inferred from paleoclimate records. Geophys Res Lett 33:L07612. doi: 10.01029/02005GL025052 CrossRefGoogle Scholar
  89. Verdon DC, Franks SW (2007) Long term drought risk assessment in the Lachlan River valley – a paleoclimate perspective. Australian. J Water Res 11Google Scholar
  90. Verdon-Kidd DC, Kiem AS (2009) Nature and causes of protracted droughts in Southeast Australia - comparison between the federation, WWII and big dry droughts. Geophys Res Lett 36:L22707. doi: 10.21029/22009GL041067 CrossRefGoogle Scholar
  91. Vicente-Serrano SM, Beguería S, López-Moreno JI (2010a) A multi-scalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index – SPEI. J Clim 23:1696–1718CrossRefGoogle Scholar
  92. Vicente-Serrano SM, Beguería S, López-Moreno JI, Angulo M, El Kenawy A (2010b) A new global 0.5° gridded dataset (1901-2006) of a multiscalar drought index: comparison with current drought index datasets based on the palmer drought severity index. J Hydrometeorol 11:1033–1043CrossRefGoogle Scholar
  93. Walsh K, White CJ, McInnes K, Holmes J, Schuster S, Richter H, Evans JP, Di Luca A, Warren RA (2016) Natural hazards in Australia: storms, wind and hail. Climatic Change 1–13. doi: 10.1007/s10584-016-1737-7
  94. Wanders N, Wada Y (2015) Human and climate impacts on the twenty-first century hydrological drought. J Hydrol 526:208–220. doi: 10.1016/j.jhydrol.2014.1010.1047 CrossRefGoogle Scholar
  95. Wanders N, Wada Y, Van Lanen HAJ (2015) Global hydrological droughts in the twenty-first century under a changing hydrological regime. Earth Syst Dyn 6:1–15. doi: 10.5194/esd-5196-5191-2015 CrossRefGoogle Scholar
  96. Westra S, White CJ, Kiem AS (2016) Introduction to the special issue: historical and projected climatic changes to Australian natural hazards. Climatic Change, In PressGoogle Scholar
  97. Wilhite DA, Svoboda M, Hayes M (2007) Understanding the complex impacts of drought: a key to enhancing drought mitigation and preparedness. Water Resour Manag 21:763–774CrossRefGoogle Scholar
  98. Williams J (2003) Can we myth-proof Australia? Australas Sci 24:40–42Google Scholar
  99. Zhao T, Dai A (2015) The magnitude and causes of global drought changes in the twenty-first century under a low-moderate emissions scenario. J Clim 28:4490–4512. doi: 10.1175/JCLI-D-4414-00363.00361 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Anthony S. Kiem
    • 1
    Email author
  • Fiona Johnson
    • 2
  • Seth Westra
    • 3
  • Albert van Dijk
    • 4
  • Jason P. Evans
    • 5
  • Alison O’Donnell
    • 6
  • Alexandra Rouillard
    • 6
  • Cameron Barr
    • 7
  • Jonathan Tyler
    • 8
    • 9
  • Mark Thyer
    • 3
  • Doerte Jakob
    • 10
  • Fitsum Woldemeskel
    • 2
  • Bellie Sivakumar
    • 2
    • 11
  • Raj Mehrotra
    • 2
  1. 1.Centre for Water, Climate and Land (CWCL), Faculty of Science and ITUniversity of NewcastleCallaghanAustralia
  2. 2.School of Civil and Environmental EngineeringUniversity of New South WalesSydneyAustralia
  3. 3.School of Civil, Environmental and Mining EngineeringUniversity of AdelaideAdelaideAustralia
  4. 4.Fenner School of Environment & SocietyAustralian National UniversityCanberraAustralia
  5. 5.Climate Change Research Centre and ARC Centre of Excellence for Climate System ScienceUniversity of New South WalesSydneyAustralia
  6. 6.School of Plant BiologyUniversity of Western AustraliaPerthAustralia
  7. 7.Department of Geography, Environment and PopulationUniversity of AdelaideAdelaideAustralia
  8. 8.Department of Earth SciencesUniversity of AdelaideAdelaideAustralia
  9. 9.Sprigg Geobiology CentreUniversity of AdelaideAdelaideAustralia
  10. 10.Environment and ResearchBureau of MeteorologyMelbourneAustralia
  11. 11.Department of Land, Air and Water ResourcesUniversity of CaliforniaDavisUSA

Personalised recommendations