Skip to main content

Advertisement

Log in

Testing the efficacy of voluntary urban greenhouse gas emissions inventories

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Drawing from an original dataset of urban metropolitan carbon footprints, we explore the correlations between national level climate change commitments and sub-national level inventories. We ask: Does voluntary reporting allow a city to perform better than national average? Does ambitiousness in commitment have an impact on performance in footprint reduction? Does having long-term commitments affect performance in footprint reduction? Do binding national level commitments (such as those under the Kyoto Protocol) affect performance at the city level in terms of footprint reduction? To provide answers, we synthesize data from the largest repository of voluntary sub-national commitments and actions towards footprint reduction and greenhouse gas inventories from around the world, the Carbonn platform. More than 500 cities report at least one action, commitment or inventory to this database. We find, using a subset of this database, perhaps counter intuitively that cities with more ambitious commitments do not necessarily have steeper reductions in emissions. Our data also suggest that having long-term self-reported goals does not make the cities perform better in terms of footprint reduction. This appears to be true for both government and community commitments reported. Lastly, and positively, our data did reveal a statistically significant effect for cities belonging to countries that had committed to the Kyoto Protocol, suggesting the necessity of binding national (and supranational) climate targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-areqi S, Kriewald S, Lamprecht A, Reusser D, Wrobel M, Margaria T (2004) Agile Workflows for Climate Impact Risk Assessment based on the ci: grasp Platform and the jABC Modeling Framework. In: International Environmental Modelling and Software Society (iEMSs) 7th Intl. Congress on Env. Modelling and Software (accepted, 2014)

  • Bleischwitz R, Nikolas B (2009) Measuring urban greenhouse gas emissions: the challenge of comparability. SAPIENS 2:7–21

    Google Scholar 

  • Butler TM, Lawrence MG (2009) The influence of megacities on global atmospheric chemistry: a modelling study. Environ Chem 6:219–225. doi:10.1071/EN08110

    Article  Google Scholar 

  • Butler TM, Lawrence MG, Gurjar BR, van Aardenne J, Schultz M, Lelieveld J (2008) The representation of emissions from megacities in global emission inventories. Atmos Environ 42:703–719. doi:10.1016/j.atmosenv.2007.09.060

    Article  Google Scholar 

  • Corfee-Morlot J, et al. (2009) Cities, Climate Change and Multilevel Governance. OECD Publishing

  • De Sherbinin A, Chen RS (2005) Global spatial data and information: development, dissemination and use: report of a workshop... 21–23 September 2004, Lamont-Doherty earth observatory, Columbia university, Palisades. Trustees of Columbia University,

  • Dhakal S (2010) GHG emissions from urbanization and opportunities for urban carbon mitigation. Curr Opin Environ Sustain 2:277–283. doi:10.1016/j.cosust.2010.05.007

    Article  Google Scholar 

  • Dodman D (2009) Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories. Environ Urban 21:185–201. doi:10.1177/0956247809103016

    Article  Google Scholar 

  • Duren RM, Miller CE (2012) Measuring the carbon emissions of megacities nature. Clim Chang 2:560–562

    Article  Google Scholar 

  • Gately CK, Hutyra LR, Sue Wing I (2015) Cities, traffic, and CO2: a multidecadal assessment of trends, drivers, and scaling relationships. Proc Natl Acad Sci 112:4999–5004. doi:10.1073/pnas.1421723112

    Article  Google Scholar 

  • Grubler A, Fisk D (2013) Energizing sustainable cities: assessing urban energy. Routledge

  • Gupta A (2010) Transparency in global environmental governance: a coming of age? Glob Environ Politics 10:1–9. doi:10.1162/GLEP_e_00011

    Article  Google Scholar 

  • Hanssen GS, Mydske PK, Dahle E (2013) Multi-level coordination of climate change adaptation: by national hierarchical steering or by regional network governance? Local Environ 18:869–887. doi:10.1080/13549839.2012.738657

    Article  Google Scholar 

  • Hoornweg D, Sugar L, Trejos Gómez CL (2011) Cities and greenhouse gas emissions: moving forward. Environ Urban 23:207–227

    Article  Google Scholar 

  • Hsu A, Cheng Y, Weinfurter A, Xu K, Yick C (2016) Track climate pledges of cities and companies. Nature 532:303

    Article  Google Scholar 

  • Ibrahim N, Sugar L, Hoornweg D, Kennedy C (2012) Greenhouse gas emissions from cities: comparison of international inventory frameworks. Local Environ 17:223–241

    Article  Google Scholar 

  • ICLEI, C40, UCLG (2015) Carbonn. ICLEI. http://carbonn.org/. Accessed May 28 2015

  • ICLEI, Institute WR, C40 (2013) Global protocol for community scale greenhouse gas emission inventories. ICLEI, WRI, C40

  • Kennedy CA, Ramaswami A, Carney S, Dhakal S (2011) Greenhouse gas emission baselines for global cities and metropolitan regions. In: Hoornweg D, Freire M, Lee MJ, Bhada-Tata P, Yuen B (eds) Cities and climate change: Responding to an urgent agenda. Urban Development Series. The World Bank, Washington, pp 15–54

  • Kennedy C, Demoullin S, Mohareb E (2012) Cities reducing their greenhouse gas emissions. Energy Policy 49:774–777. doi:10.1016/j.enpol.2012.07.030

    Article  Google Scholar 

  • Kennedy CA, Ibrahim N, Hoornweg D (2014) Low-carbon infrastructure strategies for cities nature. Clim Chang 4:343–346. doi:10.1038/nclimate2160

    Article  Google Scholar 

  • Lee T, Koski C (2015) Multilevel governance and urban climate change mitigation. Environ Plan C: Government and Policy 33:1501–1517. doi:10.1177/0263774x15614700

    Article  Google Scholar 

  • Marcotullio PJ, Sarzynski A, Albrecht J, Schulz N (2014) A top-down regional assessment of urban greenhouse gas emissions in Europe. Ambio 43:957–968. doi:10.1007/s13280-013-0467-6

    Article  Google Scholar 

  • Mohareb EA, Kennedy CA (2014) Scenarios of technology adoption towards low-carbon cities. Energy Policy 66:685–693. doi:10.1016/j.enpol.2013.10.070

    Article  Google Scholar 

  • Nordhaus W (2015) Climate clubs: overcoming free-riding in international climate policy. Am Econ Rev 105:1339–1370. doi:10.1257/aer.15000001

    Article  Google Scholar 

  • Ostrom E (2010) Polycentric systems for coping with collective action and global environmental change. Glob Environ Chang 20:550–557. doi:10.1016/j.gloenvcha.2010.07.004

    Article  Google Scholar 

  • Reilly J et al. (1999) Multi-gas assessment of the Kyoto protocol. Nature 401:549–555

    Article  Google Scholar 

  • Satterthwaite D (2008) Cities' contribution to global warming: notes on the allocation of greenhouse gas emissions. Environ Urban 20:539–549. doi:10.1177/0956247808096127

    Article  Google Scholar 

  • Sovacool BK, Brown MA (2010) Twelve metropolitan carbon footprints: a preliminary comparative global assessment. Energy Policy 38:4856–4869. doi:10.1016/j.enpol.2009.10.001

    Article  Google Scholar 

  • Strauss BH, Kulp S, Levermann A (2015) Carbon choices determine US cities committed to futures below sea level. Proc Natl Acad Sci 112:13508–13513. doi:10.1073/pnas.1511186112

    Article  Google Scholar 

  • United Nations (2010) World urbanization prospects: The 2009 revision. UN

  • US Census Bureau (2007) US economic census 2007. US Census Bureau. http://www.census.gov/econ/census07/. Accessed September 2011

  • US Census Bureau (2010) US census 2010. US Census Bureau. http://www2.census.gov/census_2010/04-Summary_File_1/. Accessed September 2011

  • Victor DG (2004) The collapse of the Kyoto Protocol and the struggle to slow global warming. Princeton University Press

  • Victor DG (2006) Toward effective international cooperation on climate change: numbers, interests and institutions. Glob Environ Politics 6:90–103. doi:10.1162/glep.2006.6.3.90

    Article  Google Scholar 

  • World Bank (2011) World Bank Open Data. World Bank. http://data.worldbank.org/. Accessed February 26 2014

  • WWF (2015) Earth Hour City Challenge. WWF. http://www.panda.org/ehcc. Accessed May 28 2015 2015

  • Xu X, Tan Y, Chen S, Yang G, Su W (2015) Urban household carbon emission and contributing factors in the Yangtze River D elta, China. PLoS ONE 10:e0121604. doi:10.1371/journal.pone.0121604

    Article  Google Scholar 

Download references

Acknowledgments

The authors are appreciative to the Research Councils United Kingdom (RCUK) for Energy Program Grant EP/K011790/1 “Center on Innovation and Energy Demand” and the Worldwide Fund for Nature, WWF and the Luc Hoffmann Institute for Grant 2015-06 “Identifying High Leverage Points for Reducing the Carbon Footprint of Cities,” which have supported elements of the work reported here. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of RCUK Energy Program, the WWF, or the Luc Hoffmann Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouad Khan.

Electronic supplementary material

ESM 1

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, F., Sovacool, B.K. Testing the efficacy of voluntary urban greenhouse gas emissions inventories. Climatic Change 139, 141–154 (2016). https://doi.org/10.1007/s10584-016-1793-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-016-1793-z

Keywords

Navigation