Climatic Change

, Volume 144, Issue 3, pp 519–533 | Cite as

Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes

  • Aiguo DaiEmail author
  • Tianbao Zhao


How drought may change in the future are of great concern as global warming continues. In Part I of this study, we examine the uncertainties in estimating recent drought changes. Substantial uncertainties arise in the calculated Palmer Drought Severity Index (PDSI) with Penman-Monteith potential evapotranspiraiton (PDSI_pm) due to different choices of forcing data (especially for precipitation, solar radiation and wind speed) and the calibration period. After detailed analyses, we recommend using the Global Precipitation Climatology Centre (GPCC) or the Global Precipitation Climatology (GPCP) datasets over other existing land precipitation products due to poor data coverage in the other datasets since the 1990s. We also recommend not to include the years after 1980 in the PDSI calibration period to avoid including the anthropogenic climate change as part of the natural variability used for calibration. Consistent with reported declines in pan evaporation, our calculated potential evapotranspiration (PET) shows negative or small trends since 1950 over the United States, China, and other regions, and no global PET trends from 1950 to 1990. Updated precipitation and streamflow data and the self-calibrated PDSI_pm all show consistent drying during 1950–2012 over most Africa, East and South Asia, southern Europe, eastern Australia, and many parts of the Americas. While these regional drying trends resulted primarily from precipitation changes related to multi-decadal oscillations in Pacific sea surface temperatures, rapid surface warming and associated increases in surface vapor pressure deficit since the 1980s have become an increasingly important cause of widespread drying over land.


Drought PDSI Precipitation Historical drought change Uncertainties Streamflow 



We thank J. Scheff, G. van der Schrier and another anonymous reviewer for constructive review comments. This study was supported by the National Key Basic Research Program of China (Grant No.2012CB956203), the U.S. National Science Foundation (Grant #AGS-1353740), U.S. Department of Energy’s Office of Science (Award #DE-SC0012602), and the U.S. National Oceanic and Atmospheric Administration (Award #NA15OAR4310086).

Supplementary material

10584_2016_1705_MOESM1_ESM.docx (4.8 mb)
ESM 1 (DOCX 4.81 mb)


  1. Adam JC, Lettenmaier DP (2008) Application of new precipitation and reconstructed streamflow products to streamflow trend attribution in northern Eurasia. J Clim 21:1807–1828CrossRefGoogle Scholar
  2. Barriopedro D, Gouveia CM, Trigo RM, Wang L (2012) The 2009/10 drought in China: possible causes and impacts on vegetation. J Hydrometeorol 13:1251–1267CrossRefGoogle Scholar
  3. Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560CrossRefGoogle Scholar
  4. Burke EJ, Brown SJ, Christidis N (2006) Modeling the recent evolution of global drought and projections for the twenty-first century with the hadley centre climate model. J Hydrometeorol 7:1113–1125CrossRefGoogle Scholar
  5. Cook BI, Smerdon JE, Seager R, Coats S (2014) Global warming and twenty-first century drying. Clim Dyn 43:2607–2627CrossRefGoogle Scholar
  6. Compo GP et al. (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28CrossRefGoogle Scholar
  7. Dai A (2011a) Drought under global warming: a review. WIREs Clim Change 2:45–65CrossRefGoogle Scholar
  8. Dai A (2011b) Characteristics and trends in various forms of the palmer drought severity index during 1900–2008. J Geophys Res 116:D12115CrossRefGoogle Scholar
  9. Dai A (2013a) Increasing drought under global warming in observations and models. Nat Clim Chang 3:52–58CrossRefGoogle Scholar
  10. Dai A (2013b) The influence of the inter-decadal Pacific oscillation on U.S. precipitation during 1923-2010. Clim Dyn 41:633–646CrossRefGoogle Scholar
  11. Dai A (2016) Historical and future changes in streamflow and continental runoff: A review. AGU Monograph entitled “Terrestrial Water Cycle and Climate Change: Natural and Human-induced Impacts” (eds by Tang Q et al.), in press.Google Scholar
  12. Dai A, Fung IY, Del Genio AD (1997) Surface observed global land precipitation variations during 1900-1988. J Clim 10:2943–2962CrossRefGoogle Scholar
  13. Dai A, Trenberth KE, Karl TR (1998) Global variations in droughts and wet spells: 1900–1995. Geophys Res Lett 25:3367–3370. doi: 10.1029/98GL52511 CrossRefGoogle Scholar
  14. Dai A, Wigley TML (2000) Global patterns of ENSO-induced precipitation. Geophys Res Lett 27:1283–1286CrossRefGoogle Scholar
  15. Dai A, Trenberth KE, Qian T (2004) A global dataset of palmer drought severity index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 5:1117–1130. doi: 10.1175/JHM-386.1 CrossRefGoogle Scholar
  16. Dai A, Qian T, Trenberth KE, Milliman JD (2009) Changes in continental freshwater discharge from 1949 to 2004. J Clim 22:2773–2791CrossRefGoogle Scholar
  17. Dong B, Dai A (2015) The influence of the inter-decadal Pacific oscillation on temperature and precipitation over the globe. Clim Dyn 45:2667–2681. doi: 10.1007/s00382-012-1446-5 CrossRefGoogle Scholar
  18. Feng S, Fu Q (2013) Expansion of global dry lands under warming climate. Atmos Chem Phys 13:10081–10094CrossRefGoogle Scholar
  19. Hoerling M, Kumar A, Dole R, Nielsen-Gammon JW, Eischeid J, Perlwitz J, Quan X-W, Zhang T, Pegion P, Chen M (2012) Anatomy of an extreme event. J Clim 26:2811–2832. doi: 10.1175/JCLI-D-12-00270.1 CrossRefGoogle Scholar
  20. IPCC (2007) Climate change 2007: the physical science basis (eds Solomon S et al.). Cambridge University Press, Cambridge.Google Scholar
  21. IPCC (2013) Climate Change 2013: The Physical Science Basis (eds Stocker TE et al.). Cambridge University Press, Cambridge.Google Scholar
  22. Lewis S, Brando P, Phillips O, van der Heijden G, Nepstad D (2011) The 2010 Amazon drought. Science 331:554–554CrossRefGoogle Scholar
  23. Liu ZY (2012) Dynamics of interdecadal climate variability: a historical perspective. J Clim 25:1963–1995CrossRefGoogle Scholar
  24. Lyon B, DeWitt DG (2012) A recent and abrupt decline in the east African long rains. Geophys Res Lett 39:L02702. doi: 10.1029/2011GL050337 CrossRefGoogle Scholar
  25. Marengo JA, Nobre CA, Tomasella J, Oyama MD, deOliveira GS, de Oliveira R, Camargo H, Alves LM, Brown IF (2008) The drought of Amazonia in 2005. J Clim 21:495–516CrossRefGoogle Scholar
  26. McGrath GS, Sadler R, Fleming K, Tregoning P, Hinz C, Veneklaas EJ (2012) Tropical cyclones and the ecohydrology of Australia’s recent continental-scale drought. Geophys Res Lett 39:L03404. doi: 10.1029/2011GL050263 Google Scholar
  27. McVicar TR et al. (2012) Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. J Hydrol 416-417:182–205CrossRefGoogle Scholar
  28. Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391:202–216. doi: 10.1016/j.jhydrol.2010.07.012 CrossRefGoogle Scholar
  29. Myhre, G., et al, 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 659–740, doi: 10.1017/CBO9781107415324.018.
  30. Palmer WC (1965) Meteorological drought. US Weather Bureau Research Paper 45: 55 ppGoogle Scholar
  31. Peterson T, Stott P, Herring S (2012) Explaining extreme events of 2011 from a climate perspective. Bull Am Meteorol Soc 93:1041–1067CrossRefGoogle Scholar
  32. Prudhomme C et al. (2014) Hydrological droughts in the twenty-first century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc Natl Acad Sci U S A 111:3262–3267. doi: 10.1073/pnas.1222473110 CrossRefGoogle Scholar
  33. Scheff J, Frierson D (2014) Scaling potential evapotranspiration with greenhouse warming. J Clim 27:1539–1558. doi: 10.1175/JCLI-D-13-00233.1 CrossRefGoogle Scholar
  34. Scheff J, Frierson D (2015) Terrestrial aridity and its response to greenhouse warming across CMIP5 climate models. J Clim 28:5583–5600CrossRefGoogle Scholar
  35. Seager R et al. (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316:1181–1184CrossRefGoogle Scholar
  36. Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31:79–105CrossRefGoogle Scholar
  37. Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491(7424):435–438. doi: 10.1038/nature11575 CrossRefGoogle Scholar
  38. Sun C, Yang S (2012) Persistent severe drought in southern China during winter and spring 2011: large-scale circulation patterns and possible impacting factors. J Geophys Res 117:D10112. doi: 10.1029/2012JD017500 CrossRefGoogle Scholar
  39. Swenson, SC (2012) GRACE monthly land water mass grids NETCDF RELEASE 5.0. Ver. 5.0. PO.DAAC, CA, USA. Dataset accessed on 2016–02-24 at doi: 10.5067/TELND-NC005.
  40. Taylor IH, Burke E, McColl L, Falloon PD, Harris GR, McNeall D (2013) The impact of climate mitigation on projections of future drought. Hydrol Earth Syst Sci 17:2339–2358. doi: 10.5194/hess-17-2339-2013 CrossRefGoogle Scholar
  41. Trenberth KE, et al (2007) Observations: Surface and Atmospheric Climate Change. Climate Change 2007: The Physical Science Basis, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miler, Ed., Cambridge University Press, 235–336.Google Scholar
  42. Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Chang 4:17–22CrossRefGoogle Scholar
  43. van der Schrier G, Efthymiadis D, Briffa KR, Jones PD (2007) European alpine moisture variability for 1800-2003. Int J Climatol 27:415–427. doi: 10.1002/joc.1411 CrossRefGoogle Scholar
  44. van der Schrier G, Jones PD, Briffa KR (2011) The sensitivity of the PDSI to the Thornthwaite and penman-Monteith parameterizations for potential evapotranspiration. J Geophys Res Atmos 116:D03106. doi: 10.1029/2010JD015001 Google Scholar
  45. van der Schrier G, Barichivich J, Briffa KR, Jones PD (2013) A scPDSI-based global data set of dry and wet spells for 1901–2009. J Geophys Res Atmos 118:4025–4048. doi: 10.1002/jgrd.50355 CrossRefGoogle Scholar
  46. Wang GL (2005) Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment. Clim Dyn 25:739–753CrossRefGoogle Scholar
  47. Wang K, Dickinson RE, Liang S (2012) Global atmospheric evaporative demand over land from 1973 to 2008. J Clim 25:8353–8361CrossRefGoogle Scholar
  48. Wehner M, Easterling DR, Lawrimore JH, Heim RR, Vose RS, Santer BD (2011) Projections of future drought in the continental United States and Mexico. J Hydrometeorol 12:1359–1377CrossRefGoogle Scholar
  49. Wei K, Wang L (2013) Reexamination of the aridity conditions in arid northwestern China for the last decade. J Clim 26:9594–9602CrossRefGoogle Scholar
  50. Wells N, Goddard S, Hayes MJ (2004) A self-calibrating palmer drought severity index. J Clim 17:2335–2351CrossRefGoogle Scholar
  51. Wilhite DA (2000) Drought as a natural hazard: concepts and definitions. In: Wilhite DA (ed) Droughts: a global assessment. Routledge, New York, pp. 3–18Google Scholar
  52. Williams AP, Seager R, Abatzoglou JT, Cook BI, Smerdon JE, Cook ER (2015) Contribution of anthropogenic warming to California drought during 2012–2014. Geophys Res Lett 42:6819–6828. doi: 10.1002/2015GL064924 CrossRefGoogle Scholar
  53. Zhai J, Su B, Krysanova V, Vetter T, Gao C, Jiang T (2010) Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of China. J Clim 23:649–663CrossRefGoogle Scholar
  54. Zhao T, Dai A (2015) The magnitude and causes of global drought changes in the twenty-firstcentury under a low–low-moderate emissions scenario. J Clim 28:4490–4512CrossRefGoogle Scholar
  55. Zhao T, Dai A (2016) Uncertainties in historical changes and future projections of drought. Part II: model-simulated historical and future drought changes. Clim Change (this issue).Google Scholar
  56. Zhao W, Khalil MAK (1993) The relationship between precipitation and temperature over the contiguous United States. J Clim 6:1232–1236CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Atmospheric and Environmental SciencesUniversity at Albany, SUNYNew YorkUSA
  2. 2.National Center for Atmospheric ResearchBoulderUSA
  3. 3.Key Laboratory of Regional Climate-Environment Research for East Asia, Institute of Atmospheric Physics (IAP)Chinese Academy of Sciences (CAS)BeijingChina

Personalised recommendations