Climatic Change

, Volume 137, Issue 1–2, pp 217–230 | Cite as

Influence of the Indian Ocean Dipole on tree-ring δ18O of monsoonal Southeast Tibet

  • Philipp HochreutherEmail author
  • Jakob Wernicke
  • Jussi Grießinger
  • Thomas Mölg
  • Haifeng Zhu
  • Lily Wang
  • Achim Bräuning


We present a newly developed, annually resolved tree-ring cellulose δ18O chronology for the southeastern Tibetan Plateau (TP) from Sikkim larch (Larix griffithii), spanning between 1684 and 2012. Comparisons with local and regional climate data reveal strong positive correlations with monthly sunshine hours, temperature and daily temperature amplitude as well as strong negative correlations with relative humidity, vapor pressure, rain days per month and cloud cover of August. Relationships with local and regional tree-ring δ18O chronologies are stable and highly significant. Over the 20th century, we find no long-term climatic trends. This is consistent with other tree-ring δ18O chronologies of other tree species south of the Himalayas, but contrasts with results from isotope studies north of the Himalayas. This suggests stable macroclimatic flow patterns throughout the last centuries for the southern tree stands. In terms of large-scale climate dynamics, we find evidence of a significant 30-year wave influencing our tree-ring oxygen chronology, most probably induced by the Indian Ocean Dipole and influencing tree-ring oxygen isotope chronologies along the southeastern Himalaya and the southeastern rim of the TP. This pattern is spatially and temporarily consistent among the chronologies and has apparently strengthened during the last century. During periods of strong positive dipole mode activity, the dipole mode index shows positive correlations with the δ18O of tree-rings on the southeastern TP.


Tibetan Plateau Indian Ocean Dipole Diurnal Temperature Range Indian Ocean Dipole Event Empirical Orthogonal Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are indebted to the German Research Foundation (DFG BR 1895/21-1) for funding. We thank Dr. Fan Zexin for contributing climate data, and Dr. Masaki Sano and Dr. Qi-Bin Zhang for providing their δ18O series.


  1. Abram NJ, Gagan MK, Liu Z, Hantoro WS, McCulloch MT, Suwargadi BW (2007) Seasonal characteristics of the Indian Ocean Dipole during the Holocene epoch. Nature 445(7125):299–302CrossRefGoogle Scholar
  2. Aggarwal PK, Fröhlich K, Kulkarni KM, Gourcy LL (2004) Stable isotope evidence for moisture sources in the asian summer monsoon under present and past climate regimes. Geophys Res Lett 31(8):L08203CrossRefGoogle Scholar
  3. Ashok K, Guan Z, Yamagata T (2001) Impact of the Indian Ocean Dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys Res Lett 28(23):4499–4502CrossRefGoogle Scholar
  4. Bigg GR, Rohling EJ (2000) An oxygen isotope data set for marine waters. J Geophys Res 105(C4):8527CrossRefGoogle Scholar
  5. Böhner J (2006) General climatic controls and topoclimatic variations in central and high Asia. Boreas 35(2):279–295CrossRefGoogle Scholar
  6. Bräuning A (2006) Tree-ring evidence of 'Little ice Age' glacier advances in Southern Tibet. The Holocene 16(3):369–380CrossRefGoogle Scholar
  7. Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26(2):115–124CrossRefGoogle Scholar
  8. Collins M (2005) El Niño- or La Niña-like climate change? Clim Dyn 24(1):89–104CrossRefGoogle Scholar
  9. Cook E, Kairiūkštis L (2010, 1989) Methods of dendrochronology: Applications in the environmental sciences. Kluwer Academic Publishers, Dordrecht, NetherlandsGoogle Scholar
  10. Curio J, Maussion F, Scherer D (2015) A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau. Earth Syst Dyn 6(1):109–124CrossRefGoogle Scholar
  11. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16(4):436–468CrossRefGoogle Scholar
  12. Ding Q, Wang B (2005) Circumglobal Teleconnection in the Northern Hemisphere summer. J Clim 18(17):3483–3505CrossRefGoogle Scholar
  13. Dorado Liñán I, Gutiérrez E, Helle G, Heinrich I, Andreu-Hayles L, Planells O, Leuenberger M, Bürger C, Schleser GH (2011) Pooled versus separate measurements of tree-ring stable isotopes. Sci Total Environ 409(11):2244–2251CrossRefGoogle Scholar
  14. Epstein S, Thompson P, Yapp CJ (1977) Oxygen and hydrogen isotopic ratios in plant cellulose. Science 198(4323):1209–1215CrossRefGoogle Scholar
  15. Gessler A, Brandes E, Keitel C, Boda S, Kayler ZE, Granier A, Barbour M, Farquhar GD, Treydte K (2013) The oxygen isotope enrichment of leaf-exported assimilates–does it always reflect lamina leaf water enrichment? New Phytol 200(1):144–157CrossRefGoogle Scholar
  16. Gray J, Thompson P (1976) Climatic information from 18O/16O ratios of cellulose in tree rings. Nature 262(5568):481–482CrossRefGoogle Scholar
  17. Grießinger J, Bräuning A, Helle G, Thomas A, Schleser G (2011) Late Holocene Asian summer monsoon variability reflected by δ18 O in tree-rings from Tibetan junipers. Geophys Res Lett 38(3):L03701CrossRefGoogle Scholar
  18. Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11(5/6):561–566CrossRefGoogle Scholar
  19. Hoffmann G, Heimann M (1997) Water isotope modeling in the Asian monsoon region. Quat Int 37:115–128CrossRefGoogle Scholar
  20. Holmes RL (1983) Computer -assisted quality control in tree -ring dating and measurement. Tree-Ring Bull 43:69–78Google Scholar
  21. Hren MT, Bookhagen B, Blisniuk PM, Booth AL, Chamberlain CP (2009) δ18O and δD of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisture sources and paleoelevation reconstructions. Earth Planet Sci Lett 288(1–2):20–32CrossRefGoogle Scholar
  22. Immerzeel WW, van Beek LP, Bierkens MF (2010) Climate change will affect the asian water towers. Science 328(5984):1382–1385CrossRefGoogle Scholar
  23. Izumo T, Vialard J, Lengaigne M, de Boyer Montegut C, Behera SK, Luo J, Cravatte S, Masson S, Yamagata T (2010) Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat Geosci 3(3):168–172CrossRefGoogle Scholar
  24. Kahmen A, Sachse D, Arndt SK, Tu KP, Farrington H, Vitousek PM, Dawsona TE (2011) Cellulose δ18O is an index of leaf-to-air vapor pressure difference (VPD) in tropical plants. PNAS 108(5):1981--1986Google Scholar
  25. Kumar KK, Rajagopalan B, Cane M (1999) On the Weakening relationship between the Indian monsoon and ENSO. Science 284(5423):2156–2159CrossRefGoogle Scholar
  26. Kumar KK, Rajagopalan B, Hoerling M, Bates G, Cane M (2006) Unraveling the mystery of Indian monsoon failure during El Niño. Science 314(5796):115–119CrossRefGoogle Scholar
  27. Laumer W, Andreu L, Helle G, Schleser G, Wieloch T, Wissel H (2009) A novel approach for the homogenization of cellulose to use micro-amounts for stable isotope analyses. Rapid Commun Mass Spectrom 23(13):1934–1940CrossRefGoogle Scholar
  28. Li Q, Nakatsuka T, Kawamura K, Liu Y, Song H (2011) Regional hydroclimate and precipitation δ18O revealed in tree-ring cellulose δ18O from different tree species in semi-arid Northern China. Chem Geol 282(1–2):19–28CrossRefGoogle Scholar
  29. Liu X, An W, Treydte K, Shao X, Leavitt S, Hou S, Chen T, Sun W, Qin D (2012) Tree-ring δ18O in Southwestern China linked to variations in regional cloud cover and tropical sea surface temperature. Chem Geol 291:104–115CrossRefGoogle Scholar
  30. Liu X, Zeng X, Leavitt SW, Wang W, An W, Xu G, Sun W, Wang Y, Qin D, Ren J (2013) A 400-year tree-ring δ18O chronology for the southeastern Tibetan Plateau: Implications for inferring variations of the regional hydroclimate. Glob Planet Chang 104:23–33CrossRefGoogle Scholar
  31. Mann ME, Lees JM (1996) Robust estimation of background noise and signal detection in climatic time series. Clim Chang 33(3):409–445CrossRefGoogle Scholar
  32. Maussion F, Scherer D, Mölg T, Collier E, Curio J, Finkelnburg R (2014) Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high Asia reanalysis. J Clim 27(5):1910–1927CrossRefGoogle Scholar
  33. McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23(7–8):771–801CrossRefGoogle Scholar
  34. Meehl GA, Arblaster JM (2001) The tropospheric Biennial Oscillation and Indian monsoon rainfall. Geophys Res Lett 28(9):1731–1734CrossRefGoogle Scholar
  35. Mischke S, Aichner B, Diekmann B, Herzschuh U, Plessen B, Wünnemann B, Zhang C (2010) Ostracods and stable isotopes of a late glacial and Holocene lake record from the NE Tibetan Plateau. Chem Geol 276(1–2):95–103CrossRefGoogle Scholar
  36. Mölg T, Renold M, Vuille M, Cullen NJ, Stocker TF, Kaser G (2006) Indian Ocean zonal mode activity in a multicentury integration of a coupled AOGCM consistent with climate proxy data. Geophys Res Lett 33(18):L18710CrossRefGoogle Scholar
  37. Mölg T, Maussion F, Scherer D (2014) Mid-latitude westerlies as a driver of glacier variability in monsoonal high Asia. Nat Clim Chang 4(1):68–73CrossRefGoogle Scholar
  38. Park H, Chiang JCH, Lintner BR, Zhang GJ (2010) The Delayed effect of major El Niño events on Indian monsoon rainfall. J Clim 23(4):932–946CrossRefGoogle Scholar
  39. Parthasarathy B., Munot A.A., Kothawale D.R. (1995) Monthly and seasonal rainfall series for all-India homogeneous regions and meteorological subdivisions: 1871–1994. Research Report, RR-065. Indian Institute of Tropical Meteorology, PuneGoogle Scholar
  40. Qiu Y, Cai W, Guo X, Ng B (2014) The asymmetric influence of the positive and negative IOD events on China's rainfall. Sci Rep 4:4943Google Scholar
  41. R Core team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, WienGoogle Scholar
  42. Rahim K (2014) Applications of multitaper Spectral analysis to Nonstationary data. Queen's University, ThesisGoogle Scholar
  43. Rinn F (2003) TSAP-Win Professional: time series analysis and Presentation for dendrochronology and related Applications. RINNTECH, HeidelbergGoogle Scholar
  44. Roden JS (2005) Carbon and oxygen isotope ratios of tree ring cellulose along a precipitation transect in Oregon, United States. J Geophys Res 110(G2)Google Scholar
  45. Roesch A, Schmidbauer H (2014) WaveletComp: computational wavelet analysis: R package version 1.0 Accessed 17 Feb 2016
  46. Saeed S, Müller WA, Hagemann S, Jacob D (2011) Circumglobal wave train and the summer monsoon over Northwestern India and Pakistan: the explicit role of the surface heat low. Clim Dyn 37(5–6):1045–1060CrossRefGoogle Scholar
  47. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401(6751):360–363Google Scholar
  48. Sano M, Ramesh R, Sheshshayee M, Sukumar R (2011) Increasing aridity over the past 223 years in the Nepal Himalaya inferred from a tree-ring δ18O chronology. The Holocene 22(7):809–817CrossRefGoogle Scholar
  49. Sano M, Tshering P, Komori J, Fujita K, Xu C, Nakatsuka T (2013) May-September precipitation in the Bhutan Himalaya since 1743 as reconstructed from tree ring cellulose δ 18 O. J Geophys Res-Atmos 118(15):8399–8410CrossRefGoogle Scholar
  50. Shi C, Daux V, Zhang Q, Risi C, Hou S, Stievenard M, Pierre M, Li Z, Masson-Delmotte V (2012) Reconstruction of Southeast Tibetan Plateau summer climate using tree ring δ18O: moisture variability over the past two centuries. Clim Past 8(1):205–213CrossRefGoogle Scholar
  51. Tian L, Masson-Delmotte V, Stievenard M, Yao T, Jouzel J (2001a) Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. J Geophys Res-Atmos 106(D22):28081–28088CrossRefGoogle Scholar
  52. Tian L, Yao T, Numaguti A, Sun W (2001b) Stable isotope variations in monsoon precipitation on the Tibetan Plateau. J Meteorol Soc Jpn. Ser II 79(5):959–966CrossRefGoogle Scholar
  53. Webster PJ, Palmer TN (1997) The past and the future of El Niño. Nature 390(6660):562–564CrossRefGoogle Scholar
  54. Wernicke J, Grießinger J, Hochreuther P, Bräuning A (2015) Variability of summer humidity during the past 800 years on the eastern Tibetan Plateau inferred from δ < sup > 18</sup > O of tree-ring cellulose. Clim Past 11(2):327–337CrossRefGoogle Scholar
  55. Wieloch T, Helle G, Heinrich I, Voigt M, Schyma P (2011) A novel device for batch-wise isolation of α-cellulose from small-amount wholewood samples. Dendrochronologia 29(2):115–117CrossRefGoogle Scholar
  56. Wu R, Chen J, Chen W (2012) Different Types of ENSO influences on the Indian summer monsoon variability. J Clim 25(3):903–920CrossRefGoogle Scholar
  57. Yang J, Liu Q, Liu Z (2010) Linking Observations of the Asian Monsoon to the Indian Ocean SST: Possible Roles of Indian Ocean Basin Mode and Dipole Mode. J Clim 23(21):5889–5902CrossRefGoogle Scholar
  58. Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B, Pu J, Lu A, Xiang Y, Kattel DB, Joswiak D (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Chang 2(9):663–667CrossRefGoogle Scholar
  59. Zhang Q, Evans MN, Lyu L (2015) Moisture dipole over the Tibetan Plateau during the past five and a half centuries. Nat Commun 6:8062CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Philipp Hochreuther
    • 1
    Email author
  • Jakob Wernicke
    • 1
  • Jussi Grießinger
    • 1
  • Thomas Mölg
    • 1
  • Haifeng Zhu
    • 2
  • Lily Wang
    • 3
  • Achim Bräuning
    • 1
  1. 1.Institute of GeographyUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  3. 3.Institute of Geographical Sciences and Natural Resource ResearchChinese Academy of SciencesBeijingChina

Personalised recommendations