CLMcrop yields and water requirements: avoided impacts by choosing RCP 4.5 over 8.5

  • Samuel Levis
  • Andrew Badger
  • Beth Drewniak
  • Cynthia Nevison
  • Xiaolin Ren
Article

Abstract

We perform CLMcrop simulations of the 20th and 21st centuries to assess potential avoided impacts in (a) crop yield losses and (b) water demand increases if humanity were to choose the representative concentration pathway (RCP) 4.5 instead of 8.5. RCP 8.5 imposes more extreme climatic changes on CLMcrop, while simultaneously exposing the crops to higher CO2 fertilization than RCP 4.5. As a result CLMcrop simulates global to regional scale changes in yield and water requirements for RCP 8.5 that exceed and sometimes more than double the RCP 4.5 changes relative to today. Under RCP 4.5 then, human societies may confront easier adaptation to changes in crop yields and water requirements. Under both RCPs, CLMcrop projects declining global yields for C3 crops (e.g., wheat, soybean, rice) without CO2 fertilization and C4 crops (corn, sugarcane) without irrigation. Yield declines of 3 t ha−1 stand out in parts of tropical and subtropical Africa and South America (presently areas of rapid agricultural expansion) and are due to increasing plant respiration and decreasing soil moisture, both due to rising temperatures. Irrigation and CO2 fertilization mitigate yield losses and in some cases lead to gains, so irrigation may help maintain or increase current yields through the 21st century. However, simulated global irrigation requirements increase: as much as 23 % for C4 crops without CO2 fertilization under RCP 8.5 and as little as 3 % for C4 crops with CO2 fertilization under RCP4.5. Nitrogen fertilized crops display greater vulnerability to climate and environmental change than unfertilized crops in our simulations; still relative to unfertilized crops, they deliver significantly higher yields and remain indispensable in supporting a more populous and affluent humanity. These CLMcrop results broadly agree with previously published outcomes for the 21st century. We describe in this article a new version of CLMcrop that represents prognostic crop behavior not only in the mid-latitudes but also the tropics.

Supplementary material

10584_2016_1654_MOESM1_ESM.docx (8.1 mb)
ESM 1(DOCX 8337 kb)

References

  1. Arnell NW (2004) Climate change and global water resources: SRES emissions and socio-economic scenarios. Global Environ Chang 14:31–52. doi:10.1016/j.gloenvcha.2003.10.006 CrossRefGoogle Scholar
  2. Badger AM, Dirmeyer PA (2015) Climate response to Amazon forest replacement by heterogeneous crop cover. Hydrol Earth Syst Sci Discuss 12:879–910. doi:10.5194/hessd-12-879-2015 CrossRefGoogle Scholar
  3. Bassu S et al. (2014) How do various maize crop models vary in their responses to climate change factors? Glob Chang Biol 20:2301–2320. doi:10.1111/gcb.12520 CrossRefGoogle Scholar
  4. Butler EE, Huybers P (2015) Variations in the sensitivity of US maize yield to extreme temperatures by region and growth phase. Environ Res Lett 10:034009. doi:10.1088/1748-9326/10/3/034009 CrossRefGoogle Scholar
  5. Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nature Clim Change 4:287–291CrossRefGoogle Scholar
  6. Chen M, Griffis TJ, Baker J, Wood JD, Xiao K (2015) Simulating crop phenology in the community land model and its impact on energy and carbon fluxes. Journal of Geophysical Research: Biogeosciences. doi:10.1002/2014JG002780 Google Scholar
  7. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, et al. (2014) Carbon and other biogeochemical cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, pp. 465–570Google Scholar
  8. Deryng D, Conway D, Ramankutty N, Price J, Warren R (2014) Global crop yield response to extreme heat stress under multiple climate change futures. Environ Res Lett 9:034011. doi:10.1088/1748-9326/9/3/034011 CrossRefGoogle Scholar
  9. Döll P (2002) Impact of climate change and variability on irrigation requirements: A global perspective. Clim Chang 54:269–293CrossRefGoogle Scholar
  10. Döll P, Siebert S (2002) Global modeling of irrigation water requirements. Water Resour Res 38:1037–1037Google Scholar
  11. Drewniak BA, Song J, Prell J, Kotamarthi VR, Jacob R (2013) Modeling agriculture in the community land model. Geosci Model Dev 6:495–515CrossRefGoogle Scholar
  12. Drewniak BA, Mishra U, Song J, Prell J, Kotamarthi VR (2014) Modeling the impact of agricultural land use and management on US carbon budgets. Biogeosciences Discuss 11:13675–13698CrossRefGoogle Scholar
  13. Dzotsi K, Agboh-Noameshie A, Struif Bontkes TE, Singh U, and Dejean P (2003) Using DSSAT to derive optimum combinations of cultivar and sowing date for maize in Southern Togo. In Decision Support Tools for Smallholder Agriculture in Sub- Saharan Africa: a practical guide, Struif Bontkes TE and Wopereis MCS (eds.), IFDC and CTA, Muscle Shoals, AL., 100–113Google Scholar
  14. Evans JR (2013) Improving photosynthesis. Plant Physiol 162:1780–1793. doi:10.1104/pp.113.219006 CrossRefGoogle Scholar
  15. Hurrell JW, Holland MM, Gent PR, Ghan S, Kay JE, Kushner PJ, Lamarque J-F, Large WG, Lawrence D, Lindsay K, Lipscomb WH, Long MC, Mahowald N, Marsh DR, Neale RB, Rasch P, Vavrus S, Vertenstein M, Bader D, Collins WD, Hack JJ, Kiehl J, Marshall S (2013) The community earth system model: a framework for collaborative research. B Am Meteorol Soc 94:1339–1360. doi:10.1175/BAMS-D-12-00121.1 CrossRefGoogle Scholar
  16. Koven CD, Riley WJ, Subin ZM, Tang JY, Torn MS, Collins WD, Bonan GB, Lawrence DM, Swenson SC (2013) The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4. Biogeosciences 10:7109–7131. doi:10.5194/bg-10-7109-2013 CrossRefGoogle Scholar
  17. Kucharik CJ (2006) A multidecadal trend of earlier corn planting in the Central USA. Agron J 98:1544–1550CrossRefGoogle Scholar
  18. Kucharik CJ (2008) Contribution of planting date trends to increased maize yields in the Central United States. Agron J 100:328–336CrossRefGoogle Scholar
  19. Kucharik CJ, Ramankutty N (2005) Trends and variability in U.S. corn yields over the twentieth century. Earth Interactions 9:1–29CrossRefGoogle Scholar
  20. Leakey ADB (2009) Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proc R Soc B 276:2333–2343. doi:10.1098/rspb.2008.151 CrossRefGoogle Scholar
  21. Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876. doi:10.1093/jxb/erp096 CrossRefGoogle Scholar
  22. Leemans R, Solomon AM (1993) Modeling the potential change in yield and distribution of the earth’s crops under a warmed climate. Clim Res 3:79–96CrossRefGoogle Scholar
  23. Levis S, Bonan GB, Kluzek E, Thornton PE, Jones A, Sacks WJ, Kucharik CJ (2012) Interactive crop management in the community earth system model (CESM1): seasonal influences on land-atmosphere fluxes. J Clim 25:4839–4859. doi:10.1175/JCLI-D-11-00446.1 CrossRefGoogle Scholar
  24. Levis S, Badger A, Drewniak BA, O’Neill BC, Ren X (2014a) CESM-simulated 21st Century Changes in Large Scale Crop Water Requirements and Yields. AGU Fall Meeting GC41B-0547, San Francisco, CaliforniaGoogle Scholar
  25. Levis S, Hartman MD, Bonan GB (2014b) The community land model underestimates land-use CO2 emissions by neglecting soil disturbance from cultivation. Geosci Model Dev 7:613–620CrossRefGoogle Scholar
  26. Lobell DB, Field CB (2007) Global scale climate-crop yield relationships and the impacts of recent warming. Environ Res Lett 2. doi:10.1088/1748-9326/2/1/014002
  27. Lobell DB, Tebaldi C (2014) Getting caught with our plants down: the risks of a global crop yield slowdown from climate trends in the next two decades. Environ Res Lett 9:074003CrossRefGoogle Scholar
  28. Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620CrossRefGoogle Scholar
  29. Lombardozzi D, Levis S, Bonan G, Hess PG, Sparks JP (2015) The influence of chronic ozone exposure on global carbon and water cycles. J Clim 28:292–305CrossRefGoogle Scholar
  30. McGrath JM, Lobell DB (2013) Regional disparities in the CO2 fertilization effect and implications for crop yields. Environ Res Lett 8:014054. doi:10.1088/1748-9326/8/1/014054 CrossRefGoogle Scholar
  31. Meehl GA, Washington WM, Arblaster JM, Hu A, Teng H, Tebaldi C, Sanderson B, Lamarque J-F, Conley A, Strand WG, White JB III (2012) Climate system response to external forcings and climate change projections in CCSM4. J Clim 25:3661–3683CrossRefGoogle Scholar
  32. Monfreda C, Ramankutty N, Foley JA (2008) Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem Cycles 22. doi:10.1029/2007GB002947
  33. Myers SS et al. (2014) Increasing CO2 threatens human nutrition. Nature 510:139–142. doi:10.1038/nature13179 CrossRefGoogle Scholar
  34. Olesen JE, Carter TR, Díaz-Ambrona CH, Fronzek S, Heidmann T, Hickler T, Hold T, Minguez MI, Morales P, Palutikof JP, Quemada M, Ruiz-Ramos M, Ruvæk GH, Sau F, Smith B, Sykes MT (2007) Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Clim Chang 81:123–143CrossRefGoogle Scholar
  35. Oleson KW, Lawrence DM, Bonan GB, Drewniak B, Huang M, Koven CD, Levis S, et al. (2013) Technical Description of version 4.5 of the Community Land Model (CLM), NCAR Technical Note NCAR/TN-503 + STR, 434 pp.Google Scholar
  36. O'Neill BC, Gettelman A. The Benefits of Reduced Anthropogenic Climate changE (BRACE): Introduction to the special issue (this issue)Google Scholar
  37. Paixão JS, Andrade CLT, Garcia AG, Amaral TA, Neto AJS, Marin FR (2014) An alternative approach to the actual Brazilian maize crop zoning. Revista Brazileira de Milho e Sorgo 13:347–363CrossRefGoogle Scholar
  38. Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environ Chang 14:53–67CrossRefGoogle Scholar
  39. Porter JR, Xie L, Challinor AJ, Cochrane K, Howden SM, Iqbal MM, Lobell DB, and Travasso MI (2014) Food security and food production systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, and White LL (eds.)]. Cambridge University Press, Cambridge, pp. 485–533Google Scholar
  40. Portmann FT, Siebert S, Döll P (2010) MIRCA2000—global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Glob Biogeochem Cycles 24:GB1011. doi:10.1029/2008GB003435 CrossRefGoogle Scholar
  41. Potter P, Ramankutty N, Bennett EM, Donner SD (2010) Characterizing the spatial patterns of global fertilizer application and manure production. Earth Interactions 14:1–22CrossRefGoogle Scholar
  42. Ramankutty N, Foley JA, Norman J, McSweeney K (2002) The global distribution of cultivable lands: current patterns and sensitivity to possible climate change. Glob Ecol Biogeogr 11:377–392CrossRefGoogle Scholar
  43. Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, Glotter M, Khabarov N, Neumann K, Piontek F, Pugh TAM, Schmid E, Stehfest E, Yang H, Jones JW (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci 111:3268–3273. doi:10.1073/pnas.1222463110 CrossRefGoogle Scholar
  44. Sacks WJ, Cook BI, Buenning N, Levis S, Helkowski JH (2009) Effects of global irrigation on the near-surface climate. Clim Dyn 33:159–175CrossRefGoogle Scholar
  45. Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc Natl Acad Sci 106:15594–15598CrossRefGoogle Scholar
  46. Seneviratne SI et al. (2013) Impact of soil moisture-climate feedbacks on CMIP5 projections: first results from the GLACE-CMIP5 experiment. Geophys Res Lett 40:5212–5217. doi:10.1002/grl.50956 CrossRefGoogle Scholar
  47. Shiklomanov IA (2000) Appraisal and assessment of world water resources. Water Int 25:11–32CrossRefGoogle Scholar
  48. Smith P (2013) Delivering food security without increasing pressure on land. Global Food Security 2:18–23CrossRefGoogle Scholar
  49. Tai APK, Val Martin M, Heald CL (2014) Threat to future global food security from climate change and ozone air pollution. Nature Clim Change 4:817–821. doi:10.1038/nclimate2317 CrossRefGoogle Scholar
  50. Teixeira EI, Fischer G, van Velthuizen H, Walter C, Ewert F (2013) Global hot-spots of heat stress on agricultural crops due to climate change. Agric for Meteorol 170:206–215. doi:10.1016/j.agrformet.2011.09.002 CrossRefGoogle Scholar
  51. Urban D, Roberts MJ, Schlenker W, Lobell DB (2012) Projected temperature changes indicate significant increase in interannual variability of U.S. maize yields. Clim Chang 112:525–533CrossRefGoogle Scholar
  52. Valipour M (2014) Future of the area equipped for irrigation. Arch Agron Soil Sci 60:1641–1660. doi:10.1080/03650340.2014.905675 Google Scholar
  53. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, et al. (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31CrossRefGoogle Scholar
  54. Zabel F, Putzenlechner B, Mauser W (2014) Global agricultural land resources–A high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS one 9:e107522CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.National Center for Atmospheric ResearchBoulderUSA
  2. 2.Now at The Climate CorporationSan FranciscoUSA
  3. 3.Cooperative Institute for Research in Environmental SciencesBoulderUSA
  4. 4.Argonne National Lab, Environmental Science DivisionArgonneUSA
  5. 5.University of Colorado, Institute of Arctic and Alpine ResearchBoulderUSA

Personalised recommendations