Natural hazards in Australia: heatwaves

Abstract

As part of a special issue on natural hazards, this paper reviews the current state of scientific knowledge of Australian heatwaves. Over recent years, progress has been made in understanding both the causes of and changes to heatwaves. Relationships between atmospheric heatwaves and large-scale and synoptic variability have been identified, with increasing trends in heatwave intensity, frequency and duration projected to continue throughout the 21st century. However, more research is required to further our understanding of the dynamical interactions of atmospheric heatwaves, particularly with the land surface. Research into marine heatwaves is still in its infancy, with little known about driving mechanisms, and observed and future changes. In order to address these knowledge gaps, recommendations include: focusing on a comprehensive assessment of atmospheric heatwave dynamics; understanding links with droughts; working towards a unified measurement framework; and investigating observed and future trends in marine heatwaves. Such work requires comprehensive and long-term collaboration activities. However, benefits will extend to the international community, thus addressing global grand challenges surrounding these extreme events.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alexander LV, Arblaster JM (2009) Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. Int J Climatol 29:417–435. doi:10.1002/joc.1730

    Article  Google Scholar 

  2. Alexander LV, Tebaldi C (2012) Climate and weather extremes: observations, modelling and projections [in “the future of the World’s climate”]. Elsevier Science, ISBN 978–0-12-386917-3

  3. Alexander LV, Hope P, Collins D, Trewin B, Lynch A, Nicholls N (2007) Trends in Australia’s climate means and extremes: a global context. Aust Meteorol Mag 56:1–18

    Google Scholar 

  4. Allen M (2003) Liability for climate change. Nature 421:891–892

    Article  Google Scholar 

  5. Allen MR, Tett SF (1999) Checking for model consistency in optimal fingerprinting. Clim Dyn 15:419–434

    Article  Google Scholar 

  6. Andrade C, Fraga H, Santos JA (2014) Climate change multi-model projections for temperature extremes in Portugal. Atmos Sci Lett 15:149–156

    Article  Google Scholar 

  7. Angélil O, Stone DA, Tadross M, Tummon F, Wehner M, Knutti R (2014) Attribution of extreme weather to anthropogenic greenhouse gas emissions: sensitivity to spatial and temporal scales. Geophys Res Lett 41:2150–2155

    Article  Google Scholar 

  8. Arblaster JM, Alexander LV (2012) The impact of the El Niño-Southern Oscillation on maximum temperature extremes. Geophys Res Lett 39(20)

  9. Argüeso D, Evans JP, Fita L, Bormann KJ (2014) Temperature response to future urbanization and climate change. Clim Dyn 42:2183–2199. doi:10.1007/s00382-013-1789-6

    Article  Google Scholar 

  10. Argüeso D, Evans JP, Pitman AJ, Di Luca A (2015) Effects of City expansion on heat stress under climate change conditions. PLoS one 10:e0117066. doi:10.1371/journal.pone.0117066

    Article  Google Scholar 

  11. Barlow KM, Christy BP, O’Leary GJ, Riffkin PA, Nuttall JG (2013) Simulating the impact of extreme heat and frost events on wheat production: the first steps. 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6

  12. Benthuysen J, Feng M, Zhong L (2014) Spatial patterns of warming off Western Australia during the 2011 Ningaloo Nino: quantifying impacts of remote and local forcing. Cont Shelf Res 91:232–246

    Article  Google Scholar 

  13. Boschat G, Pezza AB, Simmonds I, Perkins SE, Cowan T, Purich A (2015) Large scale and sub-regional connections in the lead up to summer heat wave and extreme rainfall events in eastern Australia. Clim Dyn 44:1823–1840. doi:10.1007/s00382-014-2214-5

    Article  Google Scholar 

  14. Bureau of Meteorology (2012) Annual climate summary 2012. Bureau of Meteorology, Australia, Accessed at http://www.bom.gov.au/climate/annual_sum/2012/index.shtml

  15. Bureau of Meteorology (2013) Special climate statement 43 – extreme heat in January 2013. Bureau of Meteorology, Australia

    Google Scholar 

  16. Cai W et al. (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Chang 4:111–116. doi:10.1038/nclimate2100

    Article  Google Scholar 

  17. Cai W et al. (2015) Increased frequency of extreme La Nina events under greenhouse warming. Nat Clim Chang 5:132–137. doi:10.1038/nclimate2492

    Article  Google Scholar 

  18. Coates L, Haynes K, O’Brien J, McAneney J, de Oliveira F (2014) Exploring 167 years of vulnerability: An examination of extreme heat events in Australia 1844–2010. Environ Sci Pol 42:33–44

    Article  Google Scholar 

  19. Coumou D, Robinson A (2013) Historic and future increase in the global land area affected by monthly heat extremes. Environ Res Lett 8:034018. doi:10.1088/1748-9326/8/3/034018

    Article  Google Scholar 

  20. Cowan T, Purich A, Perkins S, Pezza A, Boschat G, Sadler K (2014) More frequent, longer, and hotter heat waves for Australia in the twenty-first century, J. Climate 27:5851–3871

    Article  Google Scholar 

  21. CSIRO and Bureau of Meteorology 2015. Climate change in Australia information for Australia’s Natural Resource Management regions: technical report. Australia

  22. Davin EL, Seneviratne SI, Ciais P, et al. (2014) Preferential cooling of hot extremes from cropland albedo management. PNAS 111:9757–9761. doi:10.1073/pnas.1317323111

    Article  Google Scholar 

  23. Della-Marta P, Luterbacher J, von Weissenfluh H, Xoplaki E, Brunet M, Wanner H (2007) Summer heat waves over western Europe 1880–2003: their relationship to large-scale forcings and predictability. Clim Dyn 29:251–275. doi:10.1007/s00382-007-0233-1

    Article  Google Scholar 

  24. Diffenbaugh NS, Scherer M (2011) Observational and model evidence of global emergence of permanent, unprecedented heat in the 20th and 21st centuries. Clim Chang 107:615–624. doi:10.1007/s10584-011-0112-y

    Article  Google Scholar 

  25. Donat MG, Alexander LV, Yang H, Durre I, Vose R, Caesar J (2013) Global land-based datasets for monitoring climatic extremes. Bull Am Meteorol Soc 96:997–1006. doi:10.1175/BAMS-D-12-00109.1

    Article  Google Scholar 

  26. Evans JP, Ji F, Lee C, Smith P, Argüeso D, Fita L (2014) Design of a regional climate modelling projection ensemble experiment – NARCliM. Geosci Model Dev 7:621–629

    Article  Google Scholar 

  27. Feng M, Hendon HH, Xie SP, Marshall AG, Schiller A, Kosaka Y, Pearce A (2015) Decadal increase in Ningaloo Niño since the late 1990s. Geophys Res Lett 42(1):104–112

  28. Fiddes SL, Pezza AB, Renwick J (2015) Significant extra-tropical anomalies in the lead up to the Black Saturday fires. Int J Climatol. doi:10.1002/joc.4387

  29. Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci 3:398–403

    Article  Google Scholar 

  30. Fischer EM, Seneviratne SI, Lüthi D, Schär C (2007) Contribution of land‐atmosphere coupling to recent European summer heat waves. Geophys Res Lett 34(6). doi:10.1029/2006GL029068

  31. Fischer EM, Rajczak J, Schär C (2012) Changes in European summer temperature variability revisited. Geophys Res Lett 39:L19702. doi:10.1029/2012GL052730

    Google Scholar 

  32. Fischer EM, Beyerle U, Knutti R (2013) Robust spatially aggregated projections of climate extremes. Nat Clim Chang 3:1033–1038

    Article  Google Scholar 

  33. Foster SD, Griffin DA, Dunstan PK (2014) Twenty years of high-Resolution Sea surface temperature imagery around Australia: inter-annual and annual variability. PLoS one 9(7):e100762

    Article  Google Scholar 

  34. Furrer EM, Katz RW, Walter MD, Furrer R (2010) Statistical modelling of hot spells and heat waves. Clim Res 43:191–205. doi:10.3354/cr00924

    Article  Google Scholar 

  35. Gleeson MW, Strong AE (1995) Applying MCSST to coral reef bleaching. Adv Space Res 16:151–154

    Article  Google Scholar 

  36. Grotjahn R et al. (2015) North American extreme temperature events and related large scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends. Clim Dyn. doi:10.1007/s00382-015-2638-6

    Google Scholar 

  37. Hobday A, Alexander LV, Perkins SE, Smale DA, Straub SC, Oliver E, Bentuysen J, Burrows MT, Donat MG, Feng M, Holbrook NJ, Moore PJ, Scannell H, Sen Gupta A, Wernberg T (2016) A hierarchical approach to defining marine heatwaves. Prog Oceanogr 141:227–238. doi:10.1016/j.pocean.2015.12.014

    Article  Google Scholar 

  38. Holbrook NJ, Bindoff NL (1997) Interannual and decadal temperature variability in the southwest Pacific Ocean between 1955 and 1988. J Clim 10:1035–1049

    Article  Google Scholar 

  39. Horton DE, Johnson NC, Singh D, Swain DL, Rajaratnam B, Diffenbaugh NS (2015) Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature 522:465–469

    Article  Google Scholar 

  40. Hudson D, Marshall A, Alves O (2011) Intraseasonal forecasting of the 2009 summer and winter Australian heat waves using POAMA. Weather Forecast 26:257–279

    Article  Google Scholar 

  41. Indian Ocean Climate Initiative (2012) Western Australia’s Weather and Climate: a Synthesis of Indian Ocean climate initiative stage 3 research.In: Bryson Bates, Carsten Frederiksen and Janice Wormworth (eds) CSIRO and Bureau of Meteorology, Australia

  42. Jones DA, Trewin BC (2000) On the relationships between the El Niño–Southern Oscillation and Australian land surface temperature. Int J Climatol 20(7):697–719

  43. Kala J, Evans JP, Pitman AJ (2015) Influence of antecedent soil moisture conditions on the synoptic meteorology of the black Saturday bushfire event in southeast Australia. Quarterly Journal of the Royal Meteorological Society, Accepted 29 May 2015

  44. Kämpf J, Doubell M, Griffin D, Matthews RL, Ward TM (2004) Evidence of a large seasonal coastal upwelling system along the southern shelf of Australia. Geophys Res Lett 31(9)

  45. Kataoka T, Tozuka T, Behera S, Yamagata T (2014) On the Ningaloo Niño/Niña. Clim Dyn 43:1463–1482

    Article  Google Scholar 

  46. Kent D, Kirono D, Timbal B, Chiew F (2013) Representation of the Australian sub-tropical ridge in the CMIP3 models. Int J Climatol 33:48–57. doi:10.1002/joc.3406

    Article  Google Scholar 

  47. Kim Y-H, Min S-K, Zhang X, Ziwers F, Alexander LV, Donat MG, Tung Y (2015) Attribution of extreme temperature changes during 1951-2010. Clim Dyn. doi:10.1007/s00382-015-2674-2

    Google Scholar 

  48. Knutson TR, Zeng F, Wittenberg AT (2014) Multimodel assessment of extreme annual-mean warm anomalies during 2013 over regions of Australia and the western Tropical Pacific. [in “Explaining Extremes of 2013 from a Climate Perspective”]. Bull Amer Meteor Soc 95(9):S26–S30

    Google Scholar 

  49. Kokic P, Crimp S, Howden M (2014) A probabilistic analysis of human influence on recent record global mean temperature changes. Clim Risk Manag 3:1–12

    Article  Google Scholar 

  50. Krueger O, Hegerl GC, Tett SFB (2015) Evaluation of mechanisms of hot and cold days in climate models over central Europe. Environ Res Lett 10. doi:10.1088/1748-9326/10/1/014002

  51. Lau N-C, Nath M (2012) A model study of heat waves over North America: meteorological aspects and projections for the twenty-first century. J Clim 25:4761–4784. doi:10.1175/JCLI-D-11-00575.1

    Article  Google Scholar 

  52. Lau N-C, Nath M (2014) Model simulation and projection of European heat waves in present-day and future climates. J Clim 27(10). doi:10.1175/JCLI-D-13-00284.1

  53. Lewis SC, Karoly DJ (2013) Anthropogenic contributions to Australia's record summer temperatures of 2013. Geophys Res Lett 40:705–3709

    Article  Google Scholar 

  54. Lewis SC, Karoly DJ (2014) The role of anthropogenic forcing in the record 2013 Australia-wide annual and spring temperatures. [in “Explaining Extremes of 2013 from a Climate Perspective”]. Bull Amer Meteor Soc 95(9):S31–S34

    Google Scholar 

  55. Lima FP, Wethey DS (2012) Three decades of high-resolution coastal sea surface temperatures reveal more than warming. Nat Commun 3

  56. Loikith PC, Broccoli AJ (2012) Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J Clim 25:7266–7281

    Article  Google Scholar 

  57. Marshall AG, Hudson D, Wheeler MC, Alves O, Hendon HH, Pook MJ, Risbey JS (2013) Intra-seasonal drivers of extreme heat over Australia in observations and POAMA-2. Clim Dyn 43:1915–1937. doi:10.1007/s00382-013-2016-1

    Article  Google Scholar 

  58. McBride JL, Mills GA Wain AG (2009) The meteorology of Australian heatwaves. Understanding High Impact Weather, CAWCR Modelling Workshop, 30 Nov to 2 Dec 2009

  59. Mills KE, Pershing AJ, Brown CJ, Yong C, Fu-Sung C, Holland DS, Lehuta S, Nye JA, Sun JC, Thomas AC, Wahle RA (2013) Fisheries Management in a changing climate lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography 26:191–195

    Article  Google Scholar 

  60. Min SK, Cai W, Whetton P (2013) Influence of climate variability on seasonal extremes over Australia. J Geophys Res Atmos 118:643–654

    Article  Google Scholar 

  61. Miralles DG, Van Den Berg MJ, Teuling AJ, De Jeu RAM (2012) Soil moisture-temperature coupling: A multiscale observational analysis. Geophys Res Lett. doi:10.1029/2012GL053703

    Google Scholar 

  62. Miralles DG, Teulingb, AJ, van Heerwaarden, CC, de Arellano, JVG (2014) Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat Geosci, 7:345–349.

  63. Munich Re (2009) Heavy losses due to severe weather in the first six months of 2009, press release, 27 July 2009, www.munichre.com/en/press/press_releases/2009/2009_07_27_press_release.aspx

  64. Nairn, J, Fawcett, R (2013) Defining heatwaves: Heatwave defined as a heat-impact event servicing all community and business sectors in Australia. CAWCR Tech. Rep. 60, 96 pp. [Available online at http://www.cawcr.gov.au/publications/technicalreports/CTR_060.pdf]

  65. National Climate Centre (2009). The exceptional January-February 2009 heatwave in southeastern Australia, Bureau of Meteorology, Special Climate Statement 17

  66. Nicholls N (2004) The changing nature of Australian droughts. Clim Chang 63:323–336

    Article  Google Scholar 

  67. Nicholls N, Lavery B, Frederiksen C, Drosdowsky W, Torok S (1996) Recent apparent changes in relationships between the El Niño-Southern Oscillation and Australian rainfall and temperature. Geophys Res Lett 23:3357–3360

    Article  Google Scholar 

  68. Olita A et al. (2007) Effects of the 2003 European heatwave on the Central Mediterranean Sea: surface fluxes and the dynamical response. Ocean Sci 3:273–289

    Article  Google Scholar 

  69. Oliver ECJ, Holbrook NJ (2014) Extending our understanding of South Pacific gyre ‘spin-up’: modeling the East Australian current in a future climate. J Geophys Res 119:2788–2805. doi:10.1002/2013JC009591

    Article  Google Scholar 

  70. Oliver ECJ, Wotherspoon SJ, Chamberlain MA, Holbrook NJ (2014a) Projected Tasman Sea extremes in sea surface temperature through the 21st century. J Clim 27:1980–1998. doi:10.1175/JCLI-D-13-00259.1

    Article  Google Scholar 

  71. Oliver ECJ, Wotherspoon SJ, Holbrook NJ (2014b) Estimating extremes from global ocean and climate models: A Bayesian hierarchical model approach. Prog Oceanogr 122:77–91. doi:10.1016/j.pocean.2013.12.004

    Article  Google Scholar 

  72. Orlowsky B, Seneviratne SI (2012) Global changes in extreme events: regional and seasonal dimension. Clim Chang 110:669–696. doi:10.1007/s10584-011-0122-9

    Article  Google Scholar 

  73. Parker TJ, Berry GJ, Reeder MJ (2013) The influence of tropical cyclones on heat waves in southeastern Australia. Geophys Res Lett 40(23):6264–6270

  74. Parker TJ, Berry GJ, Reeder MJ, Nicholls N (2014a) Modes of climate variability and heat waves in Victoria, southeastern Australia. Geophys Res Lett 41:6926–6934

    Article  Google Scholar 

  75. Parker TJ, Berry GJ, Reeder MJ (2014b) The structure and evolution of heat waves in Southeastern Australia. J Clim 27:5768–5785. doi:10.1175/JCLI-D-13-00740.1

    Article  Google Scholar 

  76. Pearce A, Feng M (2013) The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J Mar Syst 111-112:139–156

    Article  Google Scholar 

  77. Perkins SE, Alexander LV (2013) On the measurement of heatwaves. J Clim 26:4500–4517. doi:10.1175/JCLI-D-12-00383.1

    Article  Google Scholar 

  78. Perkins SE, Lewis SL, King AD, Alexander LV, (2014a). Increase simulated risk of the hot Australian summer of 2012/2013 due to anthropogenic activity as measured by heat wave frequency and intensity. [in “Explaining Extremes of 2013 from a Climate Perspective”]. Bull Amer Meteor Soc 95(9):S34–S36.

  79. Perkins SE, Moise A, Whetton P, Katzfey J (2014b) Regional changes of climate extremes over Australia – a comparison of regional dynamical downscaling and global climate model simulations. Int J Climatol 34:3456–3478

    Article  Google Scholar 

  80. Perkins SE, Argüeso D, White CJ (2015) Relationships between climatevariability, soil moisture, and Australian heatwaves. J Geophys Res Atmos 120(16):8144–8164

  81. Pezza AB, Van Rensch P, Cai W (2012) Severe heat waves in Southern Australia: synoptic climatology and large scale connections. Clim Dyn 38:209–224. doi:10.1007/s00382-011-1016-2

    Article  Google Scholar 

  82. Purich A, Cowan T, Cai W, van Rensch P, Uotila P, Pezza A, Boschat G, Perkins S (2014) Atmospheric and oceanic conditions associated with Southern Australian heat waves: A CMIP5 analysis. J Clim 27:7807–7829. doi:10.1175/JCLI-D-14-00098.1

    Article  Google Scholar 

  83. Quesada B, Vautard R, Yiou P, Hirschi M, Seneviratne SI (2012) Asymmetric European summer heat predictability from wet and dry southern winters and springs. Nat Clim Chang 2:736–741

    Article  Google Scholar 

  84. Ridgway KR (2007) Long-term trend and decadal variability of the southward penetration of the East Australian current. Geophys Res Lett 34(13)

  85. Risbey JS, Pook MJ, McIntosh PC, Wheeler MC, Hendon HH (2009) On the remote drivers of rainfall variability in Australia. Mon Weather Rev 137:3233–3253

    Article  Google Scholar 

  86. Roughan M, Middleton JH (2004) On the east Australian current: variability, encroachment, and upwelling. J Geophys Res: Oceans(1978–2012) 109(C7)

  87. Russo S, Dosio A, Graversen RG, Sillmann J, Carrao H, Dunbar MB, Vogt JV (2014) Magnitude of extreme heat waves in present climate and their projection in a warming world. J Geophys Res Atmos 119:12–500

    Article  Google Scholar 

  88. Selig ER, Casey KS, Bruno JF (2010) New insights into global patterns of ocean temperature anomalies: implications for coral reef health and management. Glob Ecol Biogeogr 19:397–411

    Article  Google Scholar 

  89. Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443:205–209

    Article  Google Scholar 

  90. Sorte CJB, Fuller A, Bracken MES (2010) Impacts of a simulated heat wave on composition of a marine community. Oikos 119:1909–1918

    Article  Google Scholar 

  91. Steffen W, Hughes, L, Perkins S, (2014) Heatwaves: Hotter, Longer, More Often. Special Report by the Climate Council of Australia, Sydney, Australia. 62 pp. [Available online at http://www.climatecouncil.org.au/heatwaves-report]

  92. Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432(7017):610–614

  93. Taylor K, Stouffer R, Meehl G (2012) An overview of CMIP5 and the experiment design. Bull Amer Meteor Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  94. Timbal, B., et al., (2010) Understanding the anthropogenic nature of the observed rainfall decline across South Eastern Australia. CAWCR Tech. Rep. 026, Centre for Australian Weather and Climate Research, 202 pp. [Available online at http://www.cawcr.gov.au/publications/technicalreports/CTR_026.pdf.]

  95. Trenberth K, Fasullo J (2012) Climate extremes and climate change: the Russian heat wave and other climate extremes of 2010. J Geophys Res 117:D17103. doi:10.1029/2012JD018020

    Article  Google Scholar 

  96. Trewin BC (2009). A new index for monitoring changes in heatwaves and extended cold spells. In 9th International Conference on Southern Hemisphere Meteorology and Oceanography

  97. Trewin B, Vermont H (2010) Changes in the frequency of record temperatures in Australia, 1957–2009. Aust Meteorol Oceanogr J 60:113–119

    Google Scholar 

  98. Tryhorn L, Risbey J (2006) On the distribution of heat waves over the Australian region. Aus Meteorol Mag 55:169–182

    Google Scholar 

  99. Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ, De Bettignies T, Rousseaux CS (2013) An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Chang 3:78–82

    Article  Google Scholar 

  100. White CJ, Hudson D, Alves O (2013a) ENSO, the IOD and intraseasonal prediction of heat extremes across Australia using POAMA-2. Clim Dyn 43:1791–1810. doi:10.1007/s00382-013-2007-2

    Article  Google Scholar 

  101. White CJ, McInnes KL, Cechet RP, Corney SP, Grose MR, Holz G, Katzfey JJ, Bindoff NL (2013b) On regional dynamical downscaling for the assessment and projection of future temperature and precipitation extremes across Tasmania, Australia. Clim Dyn 41:3145–3165. doi:10.1007/s00382-013-1718-8

    Article  Google Scholar 

  102. Zander KK, Botzen WJW, Oppermann E, Kjellstrom T, Garnett ST (2015) Heat stress causes substantial labour productivity loss in Australia. Nat Clim Chang 5:647–651. doi:10.1038/nclimate2623

    Article  Google Scholar 

  103. Zheng F, Li J, Clark RT, Nnamchi HC (2013) Simulation and projection of the Southern Hemisphere annular mode in CMIP5 models. J Clim 26:9860–9879. doi:10.1175/JCLI-D-13-00204.1

    Article  Google Scholar 

Download references

Acknowledgments

S.E. Perkins-Kirkpatrick is supported by Australian Research Council grant number DE140100952. L.V. Alexander and E.C.J. Oliver are supported by Australian Research Council grant number CE110001028 and G. Boschat by Australian Research Council grand number DP140102855. T. Cowan and A. Purich are supported by the Goyder Institute for Water Research, and the Australian Climate Change Science Program. J.P. Evans is supported by funding from the NSW Office of Environment and Heritage backed NSW/ACT Regional Climate Modelling (NARCliM) Project and the Australian Research Council as part of the Future Fellowship FT110100576. This paper was a result of collaboration through the ‘Trends and Extremes’ working group as part of the Australian Water and Energy Exchanges Initiative (OzEWEX).

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. E. Perkins-Kirkpatrick.

Additional information

This article is part of a Special Issue on “The effect of historical and future climate changes on natural hazards in Australia” edited by Seth Westra, Chris White and Anthony Kiem.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perkins-Kirkpatrick, S.E., White, C.J., Alexander, L.V. et al. Natural hazards in Australia: heatwaves. Climatic Change 139, 101–114 (2016). https://doi.org/10.1007/s10584-016-1650-0

Download citation

Keywords

  • Rossby Wave
  • Madden Julian Oscillation
  • Indian Ocean Dipole
  • Couple Model Intercomparison Project Phase
  • CMIP5 Model