Climatic Change

, Volume 136, Issue 3–4, pp 555–570 | Cite as

Projections of climate change effects on discharge and inundation in the Amazon basin

  • Mino Viana Sorribas
  • Rodrigo C. D. Paiva
  • John M. Melack
  • Juan Martin Bravo
  • Charles Jones
  • Leila Carvalho
  • Edward Beighley
  • Bruce Forsberg
  • Marcos Heil Costa
Article

Abstract

Climate change and its effects on the hydrologic regime of the Amazon basin can impact biogeochemical processes, transportation, flood vulnerability, fisheries and hydropower generation. We examined projections of climate change on discharge and inundation extent in the Amazon basin using the regional hydrological model MGB-IPH with 1-dimensional river hydraulic and water storage simulation in floodplains. Future projections (2070–2099) were obtained from five GCMs from IPCC’s Fifth Assessment Report CMIP5. Climate projections have uncertainty and results from different climate models did not agree in total Amazon flooded area or discharge anomalies along the main stem river. Overall, model runs agree better with wetter (drier) conditions over western (eastern) Amazon. Results indicate that increased mean and maximum river discharge for large rivers draining the Andes in the northwest contributes to increased mean and maximum discharge and inundation extent over Peruvian floodplains and Solimões River (annual mean-max: +9 % - +18.3 %) in western Amazonia. Decreased river discharges (mostly dry season) are projected for eastern basins, and decreased inundation extent at low water (annual min) in the central (−15.9 %) and lower Amazon (−4.4 %).

Supplementary material

10584_2016_1640_MOESM1_ESM.pdf (2.4 mb)
ESM 1(PDF 2.41 mb)

References

  1. Abril G, Martinez J-M, Artigas F, et al. (2014) Amazon River carbon dioxide outgassing fuelled by wetlands. Nature. doi:10.1038/nature12797 Google Scholar
  2. Alves LM, Marengo J (2010) Assessment of regional seasonal predictability using the PRECIS regional climate modeling system over South America. Theor Appl Climatol. doi:10.1007/s00704-009-0165-2 Google Scholar
  3. Beighley RE, Eggert K, Dunne T, et al. (2009) Simulating hydrologic and hydraulic processes throughout the Amazon River basin. Hydrol Process. doi:10.1002/hyp.7252 Google Scholar
  4. Betts AK, Fisch G, Von Randow C, et al. (2009) The Amazonian boundary layer and mesoscale circulations. In: Keller M et al. (eds) Amazonia and global change. Geophysical monograph, vol 186. AGU:Washington, D. C.. doi:10.1029/2008GM000720
  5. Boisier JP, Ciais P, Ducharne A, Guimberteau M (2015) Projected strengthening of Amazonian dry season by constrained climate model simulations. Nat Clim Chang. doi:10.1038/NCLIMATE2658 Google Scholar
  6. Bourgoin LM, Bonnet M-P, Martinez J-M, et al. (2007) Temporal dynamics of water and sediment exchanges between the Curuaí floodplain and the Amazon River, Brazil. J Hydrol. doi:10.1016/j.jhydrol.2006.11.023 Google Scholar
  7. Casimiro WSL, Labat D, Guyot JL, Ardoin-Bardin S (2011) Assessment of climate change impacts on the hydrology of the Peruvian Amazon–Andes basin. Hydrol Process. doi:10.1002/hyp.8097 Google Scholar
  8. Chou SC, Marengo JA, Lyra AA, et al. (2012) Downscaling of South America present climate driven by 4-member HadCM3 runs. Clim Dyn. doi:10.1007/s00382-011-1002-8 Google Scholar
  9. Christensen JH, Boberg F, Christensen OB, Lucas-Picher P (2008) On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys Res Lett. doi:10.1029/2008GL035694 Google Scholar
  10. Christensen JH, Krishna Kumar K, Aldrian E, et al. (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF et al. (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  11. Coe M, Costa M, Botta A, Birkett C (2002) Long-term simulations of discharge and floods in the Amazon Basin. J Geophys Res-Atmos. doi:10.1029/2001JD000740 Google Scholar
  12. Coe MT, Costa MH, Howard EA (2007) Simulating the surface waters of the Amazon River basin: impacts of new river geomorphic and flow parameterizations. Hydrol Process. doi:10.1002/hyp.6850 Google Scholar
  13. Coe MT, Costa MH, Soares-Filho BS (2009) The influence of historical and potential future deforestation on the stream flow of the Amazon River – Land surface processes and atmospheric feedbacks. J Hydrol. doi:10.1016/j.jhydrol.2009.02.043 Google Scholar
  14. Coe MT, Marthews TR, Costa MH, et al. (2013) Deforestation and climate feedbacks threaten the ecological integrity of south-southeastern Amazonia. Philos Trans R Soc Lond Ser B Biol Sci. doi:10.1098/rstb.2012.0155 Google Scholar
  15. Cook B, Zeng N, Yoon J-H (2012) Will Amazonia dry out? Magnitude and causes of change from IPCC climate model projections. Earth Interact. doi:10.1175/2011EI398.1 Google Scholar
  16. Costa MH, Foley JA (1997) Water balance of the Amazon Basin: dependence on vegetation cover and canopy conductance. J Geophys Res 102(D20):23973–23989CrossRefGoogle Scholar
  17. Costa MH, Botta A, Cardille JA (2003) Effects of large-scale changes in landcover on the discharge of the Tocantins River, Southeastern Amazonia. J Hydrol. doi:10.1016/S0022-1694(03)00 Google Scholar
  18. Costa MH, Coe MT, Guyot J-L (2009) Effects of climatic variability and deforestation on surface water regimes. In: Keller M et al. (eds) Amazonia and global change, Geophysical Monograph, vol 186. AGU, Washington, D. C., pp. 543–553. doi:10.1029/2008GM000721 CrossRefGoogle Scholar
  19. Davidson E, de Araújo AC, Artaxo P, et al. (2012) The Amazon basin in transition. Nature. doi:10.1038/nature10717 Google Scholar
  20. Decharme B, Douville H, Prigent C, et al. (2008) A new river flooding scheme for global climate applications: off-line evaluation over South America. J Geophys Res-Atmos. doi:10.1029/2007JD009376 Google Scholar
  21. Dias LPC, Macedo MN, Costa MH, et al. (2015) Effects of landcover change on evapotranspiration and streamflow of small catchments in the upper Xingu River basin, Central Brazil. Journal of Hydrology: Regional Studies. doi:10.1016/j.ejrh.2015.05.010 Google Scholar
  22. Dunne T, Meade RH, Richey JE, Forsberg BR (1998) Exchanges of sediment between the floodplain and channel of the Amazon River in Brazil. GSA Bull 110(4):450–467CrossRefGoogle Scholar
  23. EPE (2012) Balanço energético nacional 2012: ano base 2011. Empresa de Pesquisa Energética (Brasil), Rio de Janeiro, p. 282Google Scholar
  24. Espinoza JC, Guyot JL, Ronchail J, et al. (2009a) Contrasting regional discharge evolutions in the Amazon basin (1974–2004). J Hydrol. doi:10.1016/j.jhydrol.2009.03.004 Google Scholar
  25. Espinoza JC, Ronchail J, Guyot JL, et al. (2009b) Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int J Climatol. doi:10.1002/joc Google Scholar
  26. Espinoza JC, Chavez S, Ronchail J, et al. (2015) Rainfall hotspots over the southern tropical Andes: spatial distribution, rainfall intensity, and relations with large-scale atmospheric circulation. Water Resour Res. doi:10.1002/2014WR016273 Google Scholar
  27. Ferreira-Ferreira J, Silva TSF, Streher AS, et al. (2014) Combining ALOS/PALSAR derived vegetation structure and inundation patterns to characterize major vegetation types in the Mamirauá Sustainable Development Reserve, Central Amazon floodplain, Brazil. Wetl Ecol Manag. doi:10.1007/s11273-014-9359-1 Google Scholar
  28. Foley JA, Botta A, Coe MT, Costa MH (2002) El Niño-Southern oscillation and the climate, ecosystems and rivers of Amazonia. Glob Biogeochem Cycles. doi:10.1029/2002GB001872 Google Scholar
  29. Garreaud R, Vuille M, Clement A (2003) The climate of the Altiplano: observed current conditions and mechanism of past changes. Palaeogeogr Palaeoclimatol Palaeoecol. doi:10.1016/S0031-0182(03)00269-4 Google Scholar
  30. Gloor M, Brienen RJW, Galbraith D, et al. (2013) Intensification of the Amazon hydrological cycle over the last two decades. Geophys Res Lett. doi:10.1002/grl.50377 Google Scholar
  31. Guimberteau M, Drapeau G, Ronchail J, et al. (2012) Discharge simulation in the sub-basins of the Amazon using ORCHIDEE forced by new datasets. Hydrol Earth Syst Sci. doi:10.5194/hess-16-911-201w Google Scholar
  32. Guimberteau M, Ronchail J, Espinoza JC, et al. (2013) Future changes in precipitation and impacts on extreme streamflow over Amazonian sub-basins. Environ Res Lett. doi:10.1088/1748-9326/8/1/014035 Google Scholar
  33. Hess LL, Affonso AG, Barbosa C, et al. (2015) Amazonian wetlands: extent, vegetative cover, and dual season inundation area. Wetlands. doi:10.1007/s13157-015-0666-y Google Scholar
  34. Joetzjer E, Douville H, Delire C, Ciais P (2013) Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3. Clim Dyn. doi:10.1007/s00382-012-1644-1 Google Scholar
  35. Jones C, Carvalho LMV (2013) Climate change in the South American monsoon system: present climate and CMIP5 projections. J Clim. doi:10.1175/JCLI-D-12-00412.1 Google Scholar
  36. Junk W (1997) General aspects of floodplain ecology with special reference to Amazonian floodplains. In: Junk W (ed) The central Amazon floodplain, ecological studies, vol Volume 126. Springer, Berlin. doi:10.1007/978-3-662-03416-3_1 CrossRefGoogle Scholar
  37. Junk W, Bayley PB, Sparks RE (1989) The floodpulse concept in River-Floodplain Systems. In: proceeding of the international large River symposium. Can Spec Publ Fish Aquat Sci 106:110–127Google Scholar
  38. Junk W, Soares MG, Bayley PB (2007) Freshwater fishes of the Amazon River basin: their biodiversity, fisheries, and habitats. Aquat Ecosyst Health Manag. doi:10.1080/14634980701351023 Google Scholar
  39. Junk W, Piedade MTF, Wittmann F, et al. (2011) Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management 210. Springer Netherlands, London. doi:10.1007/978-90-481-8725-6 CrossRefGoogle Scholar
  40. Langerwisch F, Rost S, Gerten D, et al. (2013) Potential effects of climate change on inundation patterns in the Amazon Basin. Hydrol Earth Syst Sci. doi:10.5194/hess-17-2247-2013 Google Scholar
  41. Lejeune Q, Davin EL, Guillod BP, Seneviratne SI (2015) Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation. Clim Dyn. doi:10.1007/s00382-014-2203-8 Google Scholar
  42. Lobón-Cervia J, Hess LL, Melack JM, et al. (2015) The association between forest cover and fish abundance on the Amazon floodplain. Hydrobiologia 250:245–255CrossRefGoogle Scholar
  43. Malhi Y, Roberts JT, Betts RA, et al. (2008) Climate change, Deforestation and the fate of the Amazon. Science. doi:10.1126/science.1146961 Google Scholar
  44. Marengo JA, Espinoza JC (2015) Review: extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int J Climatol. doi:10.1002/joc.4420 Google Scholar
  45. Marengo J, Nobre CA, Betts RA, Cox PM, Sampaio G, and Salazar L (2009) Global warming and climate change in Amazonia: climate-vegetation feedback and impacts on water resources In: Keller M, Bustamante M, Gash J, Silva Dias P (eds) Amazonia and global change. American Geophysical Union, Washington, D. C. doi:10.1029/2008GM000744
  46. Marengo JA, Liebmann B, Grimm AM, et al. (2012) Recent developments on the South American monsoon system. Int J Climatol. doi:10.1002/joc.2254 Google Scholar
  47. Meade RH (1991) Backwater effects in the Amazon River Basin of Brazil. Environ Geol Water Sci 18(2):105–114CrossRefGoogle Scholar
  48. Meehl GA, Stocker TF, Collins WD, et al. (2007) Global climate projections in climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S et al. (eds) . Cambridge University Press, CambridgeGoogle Scholar
  49. Melack JM (2015) Aquatic ecosystems. In L. Nagy B. Forsberg, Artaxo P (eds) The large-scale biosphere atmosphere programme in Amazonia. Ecological Studies, SpringerGoogle Scholar
  50. Melack JM, Coe MT (2013) Climate change and the Floodplain Lakes of the Amazon Basin. In: Goldman CR, Kumagai M, Robarts RD (eds) Climatic change and global warming of inland waters: impacts and mitigation for ecosystems and societies. Wiley, Chichester. doi:10.1002/9781118470596.ch17 Google Scholar
  51. Melack JM, Hess LL (2010) Remote sensing of the distribution and extent of wetlands in the Amazon Basin. In: Junk WJ et al. (eds) Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management, 210. Springer Netherlands, Dordrecht, pp. 43–59CrossRefGoogle Scholar
  52. Melack JM, Hess LL, Gastil M, et al. (2004) Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Glob Chang Biol. doi:10.1111/j.1529-8817.2003.00763.x Google Scholar
  53. Melack JM, Novo EMLM, Forsberg BR, et al. (2009) Floodplain ecosystem processes. In: Keller M et al. (eds) Amazonia and global change. AGU, Washington, D. C. doi:10.1029/2008GM000744 Google Scholar
  54. Milly P, Dunne K, Vecchia A (2005) Global pattern of trends in streamflow and water availability in a changing climate. Nature. doi:10.1038/nature04312 Google Scholar
  55. Minvielle M, Garreaud RD (2011) Projecting rainfall changes over the South American altiplano. J Clim. doi:10.1175/JCLI-D-11-00051.1 Google Scholar
  56. Moreira-Turcq P, Jouanneau JM, Turcq B, et al. (2004) Carbon sedimentation at Lago Grande de Curuai, a floodplain lake in the low Amazon region: insights into sedimentation rates. Palaeogeogr Palaeoclimatol Palaeoecol 214:27–40CrossRefGoogle Scholar
  57. Moss RH, Edmonds JA, Hibbard KA, et al. (2010) The next generation of scenarios for climate change research and assessment. Nature. doi:10.1038/nature08823 Google Scholar
  58. Neukom R, Rohrer M, Calanca P, et al. (2015) Facing unprecedented drying of the Central Andes? precipitation variability over the period AD 1000–2100. Environ Res Lett. doi:10.1088/1748-9326/10/8/084017 Google Scholar
  59. Nobre CA, Obregón GO, Marengo JA, et al. (2009) Characteristics of Amazonian climate: main features. In: Keller M et al. (eds) Amazonia and global change. AGU, Washington, D. C. doi:10.1029/2009GM000903 Google Scholar
  60. Nohara D, Kitoh A, Hosaka M, Oki T (2006) Impact of climate change on river discharge projected by multimodel ensemble. J Hydrometeorol. doi:10.1175/JHM531.1 Google Scholar
  61. Paiva RCD, Collischonn W, Tucci CEM (2011) Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach. J Hydrol. doi:10.1016/j.jhydrol.2011.06.007 Google Scholar
  62. Paiva RCD, Buarque DC, Collischonn W, et al. (2013) Large-scale hydrologic and hydrodynamic modeling of the Amazon River basin. Water Resour Res. doi:10.1002/wrcr.20067 Google Scholar
  63. Richey JE, Melack JM, Aufdenkampe AK, et al. (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature. doi:10.1038/416617a Google Scholar
  64. Rudorff CM, Melack JM, Bates PD (2014) Flooding dynamics on the lower Amazon floodplain: 2. Seasonal and interannual hydrological variability. Water Resour Res. doi:10.1002/2013WR014714 Google Scholar
  65. Sampaio G, Nobre C, Costa MH, et al. (2007) Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys Res Lett. doi:10.1029/2007GL030612 Google Scholar
  66. Seth A, Thibeault J, Garcia M, Valdivia C (2010) Making sense of twenty-first-century climate change in the Altiplano: observed trends and CMIP3 projections. Ann Assoc Am Geogr 100:835–847CrossRefGoogle Scholar
  67. Solman SA, Sanchez E, Samuelsson P, et al. (2013) Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-interim reanalysis: model performance and uncertainties. Clim Dyn. doi:10.1007/s00382-013-1667-2 Google Scholar
  68. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the Experiment Design. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-11-00094.1 Google Scholar
  69. Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 12–29. doi:10.1016/j.jhydrol.2012.05.052
  70. Thibeault JM, Seth A, Garcia M (2010) Changing climate in the Bolivian altiplano: CMIP3 projections for temperature and precipitation extremes. J Geophys Res. doi:10.1029/2009JD012718 Google Scholar
  71. Urrutia R, Vuille M (2009) Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. J Geophys Res. doi:10.1029/2008JD011021 Google Scholar
  72. Wilks DS (2006) Statistical methods in the atmospheric sciences. In: International geophysics series, Vol. 91, 2d edn. Academic Press, Amsterdam, p. 627Google Scholar
  73. Yamazaki D, Kanae S, Kim H, Oki T (2011) A physically based description of floodplain inundation dynamics in a global river routing model. Water Resour Res. doi:10.1029/2010WR009726 Google Scholar
  74. Yamazaki D, Lee H, Alsdorf D, et al. (2012) Analysis of the water level dynamics simulated by a global river model: A case study in the Amazon River. Water Resour Res. doi:10.1029/2012WR011869 Google Scholar
  75. Zulkafli Z, Buytaert W, Manz B, et al. (2016) Projected increases in the annual flood pulse of the Western Amazon. Environ Res Lett. doi:10.1088/1748-9326/11/1/014013 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Mino Viana Sorribas
    • 1
  • Rodrigo C. D. Paiva
    • 1
  • John M. Melack
    • 2
  • Juan Martin Bravo
    • 1
  • Charles Jones
    • 3
  • Leila Carvalho
    • 3
  • Edward Beighley
    • 4
  • Bruce Forsberg
    • 5
  • Marcos Heil Costa
    • 6
  1. 1.IPH/UFRGS - Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Bren School of Environmental Science and ManagementUniversity of California, Santa BarbaraSanta BarbaraUSA
  3. 3.Geography DepartmentUniversity of California, Santa BarbaraSanta BarbaraUSA
  4. 4.Civil and Environmental EngineeringNortheastern UniversityBostonUSA
  5. 5.Instituto Nacional de Pesquisas da AmazôniaManausBrazil
  6. 6.Universidade Federal de ViçosaViçosaBrazil

Personalised recommendations