Climatic Change

, Volume 136, Issue 2, pp 309–324

Impacts of regional climate change on air quality projections and associated uncertainties

  • Gwendoline Lacressonnière
  • Gilles Foret
  • Matthias Beekmann
  • Guillaume Siour
  • Magnuz Engardt
  • Michael Gauss
  • Laura Watson
  • Camilla Andersson
  • Augustin Colette
  • Béatrice Josse
  • Virginie Marécal
  • Agnes Nyiri
  • Robert Vautard
Article

Abstract

A 2-degree global warming is likely to affect the production, deposition, and transport of air pollutants, leading to impacts on air quality and health. In the present study we use an ensemble of four regional chemistry-transport models, driven by meteorological data from different climate models, to assess such changes and their uncertainties for PM2.5 and SOMO35. Changes and uncertainties are compared to the inter-model variability. We find that the impact of regional climate change on PM2.5, averaged over the model ensemble, ranges from −0.5 μg.m−3 to +1.3 μg.m−3 over Europe. It mainly results from changes in natural and biogenic emissions, such as desert dust, sea salt and biogenic VOCs. Statistically significant decreases in PM2.5 are found over southwestern Russia and Ukraine as well as an increase over Southern Spain. Modeled changes in summer ozone levels range from −1.7 to 1.6 ppbv. We find a smaller ensemble-mean evolution of SOMO35 as compared to inter-model variability. We also investigate the uncertainty due to inter-decadal variability and find that 10-year periods may not be sufficient to allow the detection of statistically significant change signals.

Supplementary material

10584_2016_1619_MOESM1_ESM.docx (3.3 mb)
ESM 1(DOCX 3342 kb)

References

  1. Andersson C, Langner J, Bergstrom R (2007) Interannual variation and trends in air pollution over Europe due to climate variability during 1958-2001 simulated with a regional CTM coupled to the ERA40 reanalysis. TELLUS B 59:77–98CrossRefGoogle Scholar
  2. Beekmann M, Vautard R (2009) A modelling study of photochemical regimes over Europe: robustness and variability. Atmos Chem Phys 9:1521–1560CrossRefGoogle Scholar
  3. Bessagnet B, Hodzic A, Vautard R, Beekmann M, Cheinet S, Honoré C, Liousse C, Rouïl L (2004) Aerosol modeling with CHIMERE-preliminary evaluation at the continental scale. Atmos Environ 38:2803–2817CrossRefGoogle Scholar
  4. Carvalho A, Monteiro A, Solman S, Miranda AI, Borrego C (2010) Climate driven changes in air quality over Europe by the end of the 21st century, with special reference to Portugal. Environ Sci Policy 13(6):445–458CrossRefGoogle Scholar
  5. Colette A, Bessagnet B, Vautard R, Szopa S, Rao S, Schucht S, Klimont Z, Menut L, Clain G, Meleux F, Rouil L (2013) European atmosphere in 2050, a regional air quality and climate perspective under CMIP5 scenarios. Atmos Chem Phys 13:7451–7471Google Scholar
  6. Colette A, Andersson C, Baklanov A, Bessagnet B, Brandt J, Christensen JH, Doherty R, Engardt M, Geels C, Giannakopoulos C, Hedegaard GB, Katragkou E, Langner J, Lei H, Manders A, Melas D, Meleux F, Rouïl L, Sofiev M, Soares J, Stevenson D, Tombrou-Tzella M, Varotsos KV, Young P (2015) Is the ozone climate penalty robust in Europe? Environ Res Lett 10:084015CrossRefGoogle Scholar
  7. FioreA, Dentener F, Wild O, Cuvelier C, Schultz M, Hess P, Textor C, Schulz M, Doherty R, Horowitz L, MacKenzie I, Sanderson M, Shindell D, Stevenson D, Szopa S, Van Dingenen R, Zeng G, Atherton C, Bergmann D, Bey I, Carmichael G, Collins W, Duncan B, Faluvegi G, Folberth G, Gauss M, Gong S, Hauglustaine D, Holloway T, Isaksen I, Jacob D, Jonson J, Kaminski J, Keating T, Lupu A, Marmer E, Montanaro V, Park R, Pitari G, and Pringle K, Pyle J, Schroeder S, Vivanco M, Wind P, Wojcik G, Wu S, Zuber A, (2009). Multimodel estimates of intercontinental source-receptor relationships for ozone pollution. J Geophys Res-Atmos 114, D04301Google Scholar
  8. Galmarini S, Kioutsioukis I, Solazzo E (2013) E pluribus unum: ensemble air quality predictions. Atmos Chem Phys 13:7153–7182Google Scholar
  9. Giorgi F, Francisco R (2000) Evaluating uncertainties in the prediction of regional climate change. Geophys Res Lett 27:1295–1298CrossRefGoogle Scholar
  10. Giorgi F, Meleux F (2007) Modelling the regional effects of climate change on air quality. C R Geosci 339:721–733Google Scholar
  11. Huszar P, Juda-Rezler K, Halenka T, Chervenkov H, Syrakov D, Krüger BC, Zanis P, Melas D, Katragkou E, Reizer M, Trapp W, Belda M (2011) Effects of climate change on ozone and particulate matter over central and Eastern Europe. Clim Res 50:51–68Google Scholar
  12. IPCC (2013) Intergovernmental panel on climate change, climate change 2013: the physical science basis - contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Tech repGoogle Scholar
  13. Jacob D, Winner D (2009) Effect of climate change on air quality. Atmos Environ 43:51–63Google Scholar
  14. Jacob D, Petersen J, Eggert B, Alias A, Christensen O, Bouwer L, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana J-F, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14:563–578CrossRefGoogle Scholar
  15. Jimenez-Guerrero P, Montavez J, Gomez-Navarro J, Jerez S, Lorente-Plazas R (2012) Impacts of climate change on ground level gas-phase pollutants and aerosols in the Iberian peninsula for the late XXI century. Atmos Environ 55:483–495CrossRefGoogle Scholar
  16. Josse B, Simon P, Peuch V-H (2004) Radon global simulation with the multiscale chemistry transport model MOCAGE. Tellus 56:339–356CrossRefGoogle Scholar
  17. Katragkou E, Zanis P, Kioutsioukis I, Tegoulias I, Melas D, Krüger B, Coppola E, (2011) Future climate change impacts on summer surface ozone from regional climate-air quality simulations over Europe. J Geophys Res-Atmos 116, D22307Google Scholar
  18. Kotlarski S, Keuler K, Christensen O, Colette A, Déqué M, Gobiet A, Goergen K, Jacob D, Lüthi D, van Meijgaard E, Nikulin G, Schär C, Teichmann C, Vautard R, Warrach-Sagi K, Wulfmeyer V (2014) Regional climate modeling on European scales: A joint 2 standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7:1297–1333Google Scholar
  19. Kukkonen J, Olsson T, Schultz D, Baklanov A, Klein T, Miranda A, Monteiro A, Hirtl M, Tarvainen V, Boy M, Peuch V-H, Poupkou A, Kioutsioukis I, Finardi S, Sofiev M, Sokhi R, Lehtinen K, Karatzas K, San José R, Astitha M, Kallos G, Schaap M, Reimer E, Jakobs H, Eben K (2012) A review of operational, regional-scale, chemical weather forecasting models in Europe. Atmos Chem Phys 11:1–87CrossRefGoogle Scholar
  20. Lacressonnière G, Peuch VH, Vautard R, Arteta J, Déqué M, Joly M, Josse B, Marécal V, Saint-Martin D (2014) European air quality in the 2030s and 2050s: impacts of global and regional emission trends and of climate change. Atmos Environ 92:348–358CrossRefGoogle Scholar
  21. Lacressonnière G, Watson L, Engardt M, Gauss M, Andersson C, Beekmann M, Colette A, Foret G, Josse J, Marécal V, Nyiri A, Siour G, Sobolowski S, Szopa S, Vautard R, (2015) Particulate matter air pollution in a + 2 °C warming world, in prepGoogle Scholar
  22. Langner L, Bergström R, Foltescu V (2005) Impact of climate change on surface ozone and deposition of sulphur and nitrogen in Europe. Atmos Environ 39(6):1129–1141CrossRefGoogle Scholar
  23. Langner L, Engardt M, Andersson C (2012a) European summer surface ozone 1990-2100. Atmos Chem Phys 12:10097–10105CrossRefGoogle Scholar
  24. Langner L, Engardt M, Baklanov A, Christensen J, Gauss M, Geels C, Hedegaard G, Nuterman R, Simpson D, Soares J, Sofiev M, Wind P, Zakey A (2012b) A multi-model study of impacts of climate change on surface ozone in Europe. Atmos Chem Phys 12:10423–10440CrossRefGoogle Scholar
  25. Megaritis AG, Fountoukis C, Charalampidis P, Denier van der Gon H, Pilinis C, Pandis S (2014) Linking climate and air quality over Europe: effects of meteorology on PM2.5 concentrations. Atmos Chem Phys 14:10283–10298CrossRefGoogle Scholar
  26. Menut L, Bessagnet B, Khvorostyanov D, Beekmann M, Colette A, Coll I, Curci G, Foret G, Hodzic A, Mailler S, Meleux F, Monge J, Pison I, Siour G, Turquety S, Valari M, Vautard R, Vivanco M (2013) Chimere 2013 : a model for regional atmospheric composition modelling. Geosci Model Dev 6:981–1028Google Scholar
  27. Pennell C, Reichler T (2011) On the effective number of climate models. J Climate 24:2358–2367CrossRefGoogle Scholar
  28. Peuch V-H, Amodei M, Barthet T, Cathala M-L, Michou M, Simon P, (1999). MOCAGE, Modèle de Chimie Atmosphérique à Grande Echelle. In: Proceedings of Météo France: Workshop on atmospheric modelling. Toulouse, pp. 33–36Google Scholar
  29. Robertson L, Langner J, Engardt M (1999) An eulerian limited-area atmospheric transport model. J Appl Meteorol Clim 38:190–210Google Scholar
  30. Simpson D, Benedictow A, Berge H, Bergstrom R, Emberson LD, Fagerli H, Flechard CR, Hayman GD, Gauss M, Jonson JE, Jenkin ME, Nyiri A, Richter C, Semeena VS, Tsyro S, Tuovinen J-P, Valdebenito A, Wind P (2012) The EMEP MSC-W chemical transport model technical description. Atmos Chem Phys 12:7825–7865CrossRefGoogle Scholar
  31. Solazzo E, Bianconi R, Vautard R, Appel K, Moran M, Hogrefe C, Bessagnet B, Brandt J, Christensen J, Chemel C, Coll I, Denier van der Gon H, Ferreira J, Forkel R, Francis X, Grell G, Grossi P, Hansen A, Jericevic A, Kraljevic L, Miranda A, Nopmongcol U, Pirovano G, Prank M, Riccio A, Sartelet K, Schaap M, Silver J, Sokhi R, Vira J, Werhahn J, Wolke R, Yarwood G, Zhang J, Rao S, Galmarini S (2012a) Model evaluation and ensemble modelling of surface-level ozone in Europe and North America in the context of AQMEII. Atmos Environ 53:60–74CrossRefGoogle Scholar
  32. Solazzo E, Bianconi R, Pirovano G, Matthias V, Vautard R, Moran M, Wyat Appel K, Bessagnet B, Brandt J, Christensen J, Chemel C, Coll I, Ferreira J, Forkel R, Francis X, Grell G, Grossi P, Hansen A, Miranda A, Nopmongcol U, Prank M, Sartelet K, Schaap M, Silver J, Sokhi R, Vira J, Werhahn J, Wolke R, Yarwood G, Zhang J, Rao ST, Galmarini S (2012b) Operational model evaluation for particulate matter in Europe and North America in the context of AQMEII. Atmos Environ 53:75–92CrossRefGoogle Scholar
  33. Stevenson D, Dentener F, Schultz M, Ellingsen K, van Noije T, Wild O, Zeng G, Amann M, Atherton C, Bell N, Bergmann D, Bey I, Butler T, Cofala J, Collins W, Derwent R, Doherty R, Drevet J, Eskes H, Fiore A, Gauss M, Hauglustaine D, Horowitz L, Isaksen I, Krol M, Lamarque J-F, Lawrence M, Montanaro V, Muller J-F, Pitari G, Prather M, Pyle J, Rast S, Rodriguez J, Sanderson M, Savage N, Shindell D, Strahan S, Sudo K, Szopa S (2006) Multimodel ensemble simulations of present-day and near-future tropospheric ozone. J Geophys Rese-Atmos 111:D08301Google Scholar
  34. Szopa S, Hauglustaine DA, Vautard R, Menut L, (2006) Future global tropospheric ozone changes and impact on European air quality. Geophys Res Lett 115Google Scholar
  35. Szopa S, Balkanski Y, Schulz M, Bekki S, Cugnet D, Fortems-Cheiney A, Turquety S, Cozic A, Deandreis C, Hauglustaine D, Idelkadi A, Lathiere J, Lefevre F, Marchand M, Vuolo R, Yan N, Dufresne J-L (2012) Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100. Clim Dynam 40(9):2223–2250Google Scholar
  36. van Loon M, Vautard R, Schaap M, Bergstrom R, Bessagnet B, Brandt J, Builtjes P, Christensen J, Cuvelier C, Graff A, Jonson JE, Krol M, Langner J, Roberts P, Rouïl L, Stern R, Tarrason L, Thunis P, Vignati E, White L, Wind P (2007) Evaluation of long-term ozone simulations from seven regional air quality models and their ensemble. Atmos Environ 41:2083–2097Google Scholar
  37. Vautard R, Builtjes P, Thunis P, Cuvelier K, Bedogni M, Bessagnet B, Honoré C, Moussiopoulos N, Schaap M, Stern R, Tarrason L, van Loon M (2007) Evaluation and intercomparison of ozone and PM10 simulations by several chemistry-transport models over 4 European cities within the City-Delta project. Atmos Environ 41:173–188CrossRefGoogle Scholar
  38. Vautard R, Gobiet A, Jacob D, Belda M, Colette A, Déqué M, Fernandez J, Garcia-Diez M, Goergen K, Güttler I, Halenka T, Karacostas T, Katragkou E, Keuler K, Kotlarski S, Mayer S, van Meijgaard E, Nikulin G, Patric M, Scinocca J, Sobolowski S, Suklitsch M, Teichmann C, Warrach-Sagi K, Wulfmeyer V, Yiou P, (2013). The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim Dynam, 1–21Google Scholar
  39. Vautard R, Gobiet A, Sobolowski S, Kjellstrom E, Stegehuis A, Watkiss P, Mendlik T, Landgren O, Nikulin G, Teichmann C, Jacob D, 2014. The European climate under a 2 °C global warming. Environ Res Lett 9Google Scholar
  40. Watson L, Lacressonnière G, Gauss M, Engardt M, Andersson C, Josse B, Marecal V, Nyiri A, Siour G, Vautard R, (2015) The impact of meteorological forcings on gas phase air pollutants over Europe. Atmos Environ 119Google Scholar
  41. WHO Regional Office for Europe (2013a) Review of evidence on health aspects of air pollution—REVIHAAP project: technical report. Copenhagen, WHO Regional Office for Europe. http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report.pdf. Accessed 13 Nov 2013
  42. WHO Regional Office for Europe (2013b) Health risks of air pollution in Europe—HRAPIE project: recommendations for concentration-response functions for cost–benefit analysis of particulate matter, ozone and nitrogen dioxide. Copenhagen, WHO Regional Office for Europe. http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2013/health-risks-of-air-pollution-in-europe-hrapie-projectrecommendations-for-concentrationresponse-functions-forcostbenefit-analysis-of-particulate-matter,-ozone-and-nitrogendioxide. Accessed 21 Feb 2014
  43. Yang B, Qian L, Lin G, Leung R, Zhang Y (2012) Some issues in uncertainty quantification and parameter tuning: A case study of convective parameterization scheme in the WRF regional climate model. Atmos Chem Phys 12:2409–2427Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Gwendoline Lacressonnière
    • 1
    • 6
    • 7
  • Gilles Foret
    • 1
  • Matthias Beekmann
    • 1
  • Guillaume Siour
    • 1
  • Magnuz Engardt
    • 2
  • Michael Gauss
    • 3
  • Laura Watson
    • 4
  • Camilla Andersson
    • 2
  • Augustin Colette
    • 5
  • Béatrice Josse
    • 4
  • Virginie Marécal
    • 4
  • Agnes Nyiri
    • 3
  • Robert Vautard
    • 6
  1. 1.IPSL/LISA, CNRS/INSUCréteilFrance
  2. 2.SMHINorrköpingSweden
  3. 3.EMEP MSC-W, Norwegian Meteorological InstituteOsloNorway
  4. 4.CNRM-GAME, Météo-France and CNRSToulouseFrance
  5. 5.INERISVerneuil-en-HalatteFrance
  6. 6.IPSL/LSCE, CEA/CNRS/UVSQGif-sur-YvetteFrance
  7. 7.ARIA-TechnologiesBoulogne-BillancourtFrance

Personalised recommendations