Climatic Change

, Volume 135, Issue 3–4, pp 569–583 | Cite as

Spatial modelling of rice yield losses in Tanzania due to bacterial leaf blight and leaf blast in a changing climate

  • Confidence Duku
  • Adam H. Sparks
  • Sander J. Zwart
Article

Abstract

Rice is the most rapidly growing staple food in Africa and although rice production is steadily increasing, the consumption is still out-pacing the production. In Tanzania, two important diseases in rice production are leaf blast caused by Magnaporthe oryzae and bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. The objective of this study was to quantify rice yield losses due to these two important diseases under a changing climate. We found that bacterial leaf blight is predicted to increase causing greater losses than leaf blast in the future, with losses due to leaf blast declining. The results of this study indicate that the effects of climate change on plant disease can not only be expected to be uneven across diseases but also across geographies, as in some geographic areas losses increase but decrease in others for the same disease.

Supplementary material

10584_2015_1580_MOESM1_ESM.kml (4 kb)
(kml 3.96 KB)
10584_2015_1580_MOESM2_ESM.kml (3 kb)
(kml 3.25 KB)

References

  1. Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19(10):535–544. doi:10.1016/j.tree.2004.07.021. http://www.sciencedirect.com/science/article/pii/S0169534704002186 CrossRefGoogle Scholar
  2. Barreiro-Hurle J (2012) Analysis of incentives and disincentives for rice in the United Republic of Tanzania. Technical note series, MAFAP, FAO, RomeGoogle Scholar
  3. Bivand R, Keitt T, Rowlingson B (2014) rgdal: Bindings for the Geospatial Data Abstraction Library. http://CRAN.R-project.org/package=rgdal, , R package version 0.8-16
  4. Boko M, Niang I, Nyong A, Vogel C, Githeko A, Medany M, Osman-Elasha B, Tabo R, Yanda P (2007) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, chap Africa, 433–467Google Scholar
  5. Bouman B, Kropff M, Tuong T, Woperies M, ten Berge H, van Laar H (2001) ORYZA2000: modeling lowland rice. International Rice Research Institute, and Wageningen: Wageningen University and Research Center, Suite 1009, Pacific Bank Building, 6776 Ayala Avenue, Makati City, PhilippinesGoogle Scholar
  6. Chakraborty S, Newton AC (2011) Climate change, plant diseases and food security: an overview. Plant Pathol 60(1):2–14. doi:10.1111/j.1365-3059.2010.02411.x CrossRefGoogle Scholar
  7. Coakley SM, Scherm H, Chakraborty S (1999) Climate change and plant disease management. Annu Rev Phytopathol 37(1):399–426. doi:10.1146/annurev.phyto.37.1.399. pMID: 11701829CrossRefGoogle Scholar
  8. Diagne A, Amovin-Assagba E, Futakuchi K, Wopereis M (2013) Realizing Africa’s rice promise, CAB International, Nosworthy Way, Wallingford, Oxfordshire OX10 8DE, UK, chap Estimation of cultivated area, number of farming households and yield for major rice-growing environments in Africa, 35–45Google Scholar
  9. Food and Agriculture Organization of the United Nations (2015) CROPCALENDAR. Crop calendar (Database). Webpage, http://data.fao.org/ref/2ca1cadd-9ee2-42ee-84d4-34473f2508fa.html?version=1.0 http://data.fao.org/ref/2ca1cadd-9ee2-42ee-84d4-34473f2508fa.html?version=1.0
  10. Foundation PS (2014) The Python Language Reference. Python Software Foundation, https://docs.python.org/2/
  11. Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE (2006) Climate change effects on plant disease: Genomes to ecosystems. Annu Rev Phytopathol 44(1):489–509. doi:10.1146/annurev.phyto.44.070505.143420. pMID: 16722808CrossRefGoogle Scholar
  12. Geng S, de Vries FWP, Supit I (1986) A simple method for generating daily rainfall data. Agric For Meteorol 36(4):363–376. 10.1016/0168-1923(86)90014-6. http://www.sciencedirect.com/science/article/pii/0168192386900146 CrossRefGoogle Scholar
  13. Haefele SM, Saito K, N’Diaye KM, Mussgnug F, Nelson A, Wopereis MCS (2013) Realizing Africa’s rice promise, CAB International, Nosworthy Way, Wallingford, Oxfordshire OX10 8DE, UK, chap Increasing Productivity Through Improved Nutrient Use in Africa, 205–264Google Scholar
  14. Hijmans RJ (2014) raster: Geographic data analysis and modeling. http://CRAN.R-project.org/package=raster, R package version 2.2-31
  15. Hijmans RJ, Forbes GA, Walker TS (2000) Estimating the global severity of potato late blight with GIS-linked disease forecast models. Plant Pathol 49(6):697–705. doi:10.1046/j.1365-3059.2000.00511.x CrossRefGoogle Scholar
  16. Hijmans RJ, Savary S, Pangga R, Aunario J (2009) cropsim: Simulation modeling of crops and their diseases. R package version 0.2.0-5Google Scholar
  17. Institute (2011) ArcGIS Desktop: Release 10. Environmental Systems Research Institute, RedlandsGoogle Scholar
  18. Jones P, Thornton P, Heinke J (2009) Generating characteristic daily weather data using downscaled climate model data from the IPCC’s Fourth Assessment ReportGoogle Scholar
  19. Juroszek P, von Tiedemann A (2011) Potential strategies and future requirements for plant disease management under a changing climate. Plant Pathol 60(1):100–112. doi:10.1111/j.1365-3059.2010.02410.x CrossRefGoogle Scholar
  20. Kermack W, McKendrick A (1927) A contribution to the mathematical theory of epidemics. Proc R Soc Lond 115:700–721CrossRefGoogle Scholar
  21. Kim KH, Cho J, Lee YH, Lee WS (2015) Predicting potential epidemics of rice leaf blast and sheath blight in south korea under the RCP 4.5 and RCP 8.5 climate change scenarios using a rice disease epidemiology model, EPIRICE. Agric For Meteorol 203(0):191–207. doi:10.1016/j.agrformet.2015.01.011. http://www.sciencedirect.com/science/article/pii/S016819231500012X CrossRefGoogle Scholar
  22. Liu J, Williams JR, Wang X, Yang H (2009) Using MODAWEC to generate daily weather data for the EPIC model. Environ Model Softw 24(5):655–664. doi:10.1016/j.envsoft.2008.10.008. http://www.sciencedirect.com/science/article/pii/S1364815208001904 CrossRefGoogle Scholar
  23. Luck J, Spackman M, Freeman A, Trebicki P, Griffiths W, Finlay K, Chakraborty S (2011) Climate change and diseases of food crops. Plant Pathol 60 (1):113–121. doi:10.1111/j.1365-3059.2010.02414.x CrossRefGoogle Scholar
  24. Madden L, Hughes G, van den Bosch F (2007) The study of plant disease epidemics. The American Phytopathological Society. APS Press, St. PaulGoogle Scholar
  25. Madden LV (2006) Botanical epidemiology: some key advances and its continuing role in disease management. Eur J Plant Pathol 115(1):3–23. doi:10.1007/s10658-005-1229-5 CrossRefGoogle Scholar
  26. Meertens H, Ndege L, Lupeja P (1999) The cultivation of rainfed, lowland rice in Sukumaland, Tanzania. Agric Ecosyst Environ 76(1):31–45. doi:10.1016/S0167-8809(99)00073-0 CrossRefGoogle Scholar
  27. Parry M, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under {SRES} emissions and socio-economic scenarios. Glob Environ Chang 14(1):53–67. doi:10.1016/j.gloenvcha.2003.10.008. climate Change. http://www.sciencedirect.com/science/article/pii/S0959378003000827
  28. Pautasso M, Dehnen-Schmutz K, Holdenrieder O, Pietravalle S, Salama N, Jeger M J, Lange E, Hehl-Lange S (2010) Plant health and global change – some implications for landscape management. Biol Rev 85(4):729–755. doi:10.1111/j.1469-185X.2010.00123.x Google Scholar
  29. Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 101(27):9971–9975. 10.1073/pnas.0403720101. http://www.pnas.org/content/101/27/9971.full.pdf CrossRefGoogle Scholar
  30. Portmann FT, Siebert S, Döll P (2010) MIRCA2000—global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Glob Biogeochem Cycles 24(1). doi:10.1029/2008GB003435
  31. R Core Team (2014) R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/
  32. Ripley B, Lapsley M (2013) RODBC: ODBC Database Access. http://CRAN.R-project.org/package=RODBC, R package version 1.3-10
  33. Rowhani P, Lobell DB, Linderman M, Ramankutty N (2011) Climate variability and crop production in Tanzania. Agric For Meteorol 151(4):449–460. doi:10.1016/j.agrformet.2010.12.002. http://www.sciencedirect.com/science/article/pii/S0168192310003357 CrossRefGoogle Scholar
  34. Saito K, Nelson A, Zwart S, Niang A, Sow A, Yoshida H, Wopereis M (2013) Realizing Africa’s rice promise, CAB International, Nosworthy Way, Wallingford, Oxfordshire OX10 8DE, UK, chap Towards a better understanding of biophysical determinants of yield gaps and potential expansion of rice area in Africa, 188–203Google Scholar
  35. Savary S, Willocquet L, Elazegui FA, Teng PS, Van Du P, Zhu D, Tang Q, Huang S, Lin X, Singh HM, Srivastava RK (2000) Rice pest constraints in tropical Asia: Characterization of injury profiles in relation to production situations. Plant Dis 84(3):341–356. doi:10.1094/PDIS.2000.84.3.341 CrossRefGoogle Scholar
  36. Savary S, Nelson A, Sparks AH, Willocquet L, Duveiller E, Mahuku G, Forbes G, Garrett KA, Hodson D, Padgham J, Pande S, Sharma M, Yuen J, Djurle A (2011) International agricultural research tackling the effects of global and climate changes on plant diseases in the developing world. Plant Dis 95 (10):1204–1216. doi:10.1094/PDIS-04-11-0316 CrossRefGoogle Scholar
  37. Savary S, Nelson A, Willocquet L, Pangga I, Aunario J (2012) Modeling and mapping potential epidemics of rice diseases globally. Crop Prot 34(0):6–17. doi:10.1016/j.cropro.2011.11.009. http://www.sciencedirect.com/science/article/pii/S0261219411003656 CrossRefGoogle Scholar
  38. Seck P, Toure A, Coulibaly J, Diagne A, Wopereis M (2013) Realizing Africa’s rice promise, CAB International, Nosworthy Way, Wallingford, Oxfordshire OX10 8DE, UK, chap Africa’s rice economy before and after the 2008 rice crisis, 24–34Google Scholar
  39. Sere Y, Fargette D, Abo M, Wydra K, Bimerew M, Onasanya A, Akator S (2013) Realizing Africa’s rice promise, CAB International, Nosworthy Way, Wallingford, Oxfordshire OX10 8DE, UK, chap Managing the major diseases of rice in Africa, 213–228Google Scholar
  40. Sparks AH, Forbes GA, Hijmans RJ, Garrett KA (2014) Climate change may have limited effect on global risk of potato late blight. Glob Chang Biol 20 (12):3621–3631. doi:10.1111/gcb.12587 CrossRefGoogle Scholar
  41. Stevens RB (1960) Plant Pathology, an Advanced Treatise, vol 3. Academic Press, New York, pp 357–429Google Scholar
  42. Sutherst RW, Constable F, Finlay KJ, Harrington R, Luck J, Zalucki MP (2011) Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdiscip Rev Clim Chang 2(2):220–237. doi:10.1002/wcc.102
  43. Thornton PK, Jones PG, Alagarswamy G, Andresen J (2009) Spatial variation of crop yield response to climate change in East Africa. Glob Environ Chang 19(1):54–65. doi:10.1016/j.gloenvcha.2008.08.005. http://www.sciencedirect.com/science/article/pii/S0959378008000812 CrossRefGoogle Scholar
  44. Verdier V, Cruz CV, Leach JE (2012) Controlling rice bacterial blight in Africa: Needs and prospects. J Biotechnol 159(4):320–328. doi:10.1016/j.jbiotec.2011.09.020. http://www.sciencedirect.com/science/article/pii/S0168165611005578 CrossRefGoogle Scholar
  45. Willocquet L, Savary S, Fernandez L, Elazegui F, Teng P (2000) Development and evaluation of a multiple-pest, production situation specific model to simulate yield losses of rice in tropical Asia. Ecol Model 131(2–3):133–159. 10.1016/S0304-3800(00)00271-4. http://www.sciencedirect.com/science/article/pii/S0304380000002714 CrossRefGoogle Scholar
  46. Willocquet L, Savary S, Fernandez L, Elazegui F, Castilla N, Zhu D, Tang Q, Huang S, Lin X, Singh H, Srivastava R (2002) Structure and validation of RICEPEST, a production situation-driven, crop growth model simulating rice yield response to multiple pest injuries for tropical Asia. Ecol Model 153(3):247–268. doi:10.1016/S0304-3800(02)00014-5. http://www.sciencedirect.com/science/article/pii/S0304380002000145 CrossRefGoogle Scholar
  47. Willocquet L, Elizegui FA, Castilla N, Fernandez L, Fischer KS, Peng S, Ten PS, Srivastava RK, Singh HM, Zhu D, Savary S (2004) Research priorities for rice management in tropical Asia: A simulation analysis of yield losses and management efficiencies. Phytopathology 94:672–682CrossRefGoogle Scholar
  48. Yoshida S (1981) Fundamentals of Rice Science. The International Rice Research Institute, PO Box 933, Metro Manila, PhilippinesGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Africa Rice Center (AfricaRice)CotonouBenin
  2. 2.International Rice Research Institute (IRRI)Metro ManilaPhilippines
  3. 3.Environmental Systems Analysis GroupWageningen UniversityWageningenThe Netherlands

Personalised recommendations