Abstract
We present an assessment of the impacts of a +2°C global warming on extreme floods and hydrological droughts (1 in 10 and 1 in 100 year events) in Europe using eleven bias-corrected climate model simulations from CORDEX Europe and three hydrological models. The results show quite contrasted results between northern and southern Europe. Flood magnitudes are expected to increase significantly south of 60oN, except for some regions (Bulgaria, Poland, south of Spain) where the results are not significant. The sign of these changes are particularly robust in large parts of Romania, Ukraine, Germany, France and North of Spain. North of this line, floods are projected to decrease in most of Finland, NW Russia and North of Sweden, with the exception of southern Sweden and some coastal areas in Norway where floods may increase. The results concerning extreme droughts are less robust, especially for drought duration where the spread of the results among the members is quite high in some areas. Anyway, drought magnitude and duration may increase in Spain, France, Italy, Greece, the Balkans, south of the UK and Ireland. Despite some remarkable differences among the hydrological models’ structure and calibration, the results are quite similar from one hydrological model to another. Finally, an analysis of floods and droughts together shows that the impact of a +2°C global warming will be most extreme for France, Spain, Portugal, Ireland, Greece and Albania. These results are particularly robust in southern France and northern Spain.
This is a preview of subscription content,
to check access.




Similar content being viewed by others
References
Burek P, van der Knijff J, de Roo A (2013) LISFLOOD Distributed Water Balance and Flood Simulation Model. Revised user manual. JRC technical reports EUR 22166 EN/3 EN
Chauveau M, Chazot S, Perrin C, Bourgin PY, Sauquet E (2013) Quels impacts des changements climatiques sur les eaux de surface en France a l'horizon 2070 ? La Houille Blanche - Revue internationale de l'eau: 5-15
Chen J, Brissette FP, Chaumont D, Braun M (2013) Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour Res 49:4187–4205. doi:10.1002/wrcr.20331
Dankers R, Feyen L (2009) Flood hazard in Europe in an ensemble of regional climate scenarios. J Geophys Res Atmos 114. doi:10.1029/2008jd011523
Dankers R et al. (2014) First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble. Proc Natl Acad Sci 111:3257–3261. doi:10.1073/pnas.1302078110
Donnelly C, Andersson JCM, Arheimer B (2015) Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe. Hydrol Sci J. doi:10.1080/02626667.2015.1027710
Ducharne A et al. (2010) Climate change impacts on water resources and hydrological extremes in northern France. In: Carrera J (ed) Proceedings of the XVIII International Conference on Computation Methods in Water Resources, Barcelona, pp 21–24
European Commission (2007) Limiting global climate change to 2 degrees Celsius: the way ahead for 2020 and beyond. Commission of the European Communities, Brussels
Feyen L, Dankers R (2009) Impact of global warming on streamflow drought in Europe. J Geophys Res Atmos 114:D17116. doi:10.1029/2008jd011438
Feyen L, Barredo JI, Dankers R (2009) Implications of global warming and urban land use change on flooding in Europe, Water and Urban Development Paradigms, edited by: Feyen, J., Shannon, K., and Neville, M., pp 217–225
Forzieri G, Feyen L, Rojas R, Flörke M, Wimmer F, Bianchi A (2014) Ensemble projections of future streamflow droughts in Europe. Hydrol Earth Syst Sci 18:85–108. doi:10.5194/hess-18-85-2014
Global Runoff Data Centre (2013) Long-Term Mean Monthly Discharges and Annual Characteristics of GRDC Station. Global Runoff Data Centre, Federal Institute of Hydrology (BfG), Koblenz
Gobiet A, Kotlarski S, Beniston M, Heinrich G, Rajczak J, Stoffel M (2014) 21st century climate change in the European Alps—A review. Science of The Total Environment 493:1138–1151 doi:10.1016/j.scitotenv.2013.07.050
Greuell W et al. (2015) Evaluation of five hydrological models across Europe and their suitability for making projections underof climate change. Hydrol Earth Syst Sci Discuss 12:10289–10330. doi:10.5194/hessd-12-10289-2015
Gutmann E, Pruitt T, Clark MP, Brekke L, Arnold JR, Raff DA, Rasmussen RM (2014) An intercomparison of statistical downscaling methods used for water resource assessments in the United States. Water Resour Res 50:7167–7186. doi:10.1002/2014wr015559
Haddeland I et al. (2011) Multimodel Estimate of the Global Terrestrial Water Balance: Setup and First Results. J Hydrometeorol 12:869–884. doi:10.1175/2011jhm1324.1
Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res Atmos 113. doi:10.1029/2008jd010201
Huang S, Krysanova V, Hattermann F (2014) Projections of climate change impacts on floods and droughts in Germany using an ensemble of climate change scenarios. Reg Environ Chang. doi:10.1007/s10113-014-0606-z
IPCC (2012) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change Cambridge, UK and New York, NY, USA
Jacob D et al. (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Chang 14:563–578. doi:10.1007/s10113-013-0499-2
Jiménez Cisneros BE et al. (2014) Freshwater resources. In: Field CB et al. (eds) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 229–269
Kay AL, Reynard NS, Jones RG (2006) RCM rainfall for UK flood frequency estimation. I. Method and validation. J Hydrol 318:151–162. doi:10.1016/j.jhydrol.2005.06.012
Köplin N, Schädler B, Viviroli D, Weingartner R (2014) Seasonality and magnitude of floods in Switzerland under future climate change. Hydrol Process 28:2567–2578. doi:10.1002/hyp.9757
Kovats RS et al. (2014) Europe. In: Barros VR et al. (eds) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp 1267–1326
Krause P, Boyle DP, Bäse F (2005) Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci 5:89–97. doi:10.5194/adgeo-5-89-2005
Liang X, Lettenmaier DP, Wood EF, Burges SJ (1994) A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J Geophys Res Atmos 99(1984–2012):14415–14428
Madsen H, Lawrence D, Lang M, Martinkova M, Kjeldsen TR (2014) Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. J Hydrol 519(Part D):3634–3650. doi:10.1016/j.jhydrol.2014.11.003
Meylan P, Favre A-C, Musy A (2008) Hydrologie Frequentielle. Science et ingénierie de l'environnement, PPUR
Moss RH et al. (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756
Nijssen B, Schnur R, Lettenmaier DP (2001) Global Retrospective Estimation of Soil Moisture Using the Variable Infiltration Capacity Land Surface Model, 1980–93. J Clim 14:1790–1808
Ntegeka V, Salamon P, Gomes G, Sint H, Lorini V, Zambrano-Bigiarini M, Thielen J (2013) EFAS-Meteo: A European daily high-resolution gridded meteorological data set for 1990–2011. Report EUR 26408 EN
Prudhomme C et al. (2014) Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc Natl Acad Sci 111:3262–3267. doi:10.1073/pnas.1222473110
Rajczak J, Pall P, Schär C (2013) Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine Region. J Geophys Res Atmos 118:3610–3626. doi:10.1002/jgrd.50297
Reynard NS, Crooks SM, Kay AL, Prudhomme C (2010) Regionalised Impacts of Climate Change on Flood Flows. Department for Environment, Food and Rural Affairs
Rojas R, Feyen L, Bianchi A, Dosio A (2012) Assessment of future flood hazard in Europe using a large ensemble of bias-corrected regional climate simulations. J Geophys Res Atmos 117:D17109. doi:10.1029/2012jd017461
Roudier P, Mahé G (2010) Calculation of design rainfall and runoff on the Bani basin (Mali) : a study of the vulnerability of hydraulic structures and of the population since the drought. Hydrol Sci J 55:351–363
Schewe J et al. (2014) Multimodel assessment of water scarcity under climate change. Proc Natl Acad Sci 111:3245–3250. doi:10.1073/pnas.1222460110
Sterling S, Ducharne A, Polcher J (2013) The impact of global land-cover change on the terrestrial water cycle. Nat Clim Chang 3:385–390
Themeßl M, Gobiet A, Leuprecht A (2011) Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int J Climatol 31:1530–1544. doi:10.1002/joc.2168
Themeßl M, Gobiet A, Heinrich G (2012) Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Clim Chang 112:449–468. doi:10.1007/s10584-011-0224-4
Van Vliet M, Donnelly C, Stromback L, Capell R (2015) European scale climate information services for water use sectors. J Hydrol 528:503–513
Vautard R et al. (2014) The European climate under a 2 °C global warming. Environ Res Lett 9:034006
Vormoor K, Lawrence D, Heistermann M, Bronstert A (2015) Climate change impacts on the seasonality and generation processes of floods - projections and uncertainties for catchments with mixed snowmelt/rainfall regimes. Hydrol Earth Syst Sci 19:913–931. doi:10.5194/hess-19-913-2015
Wilcke R, Mendlik T, Gobiet A (2013) Multi-variable error correction of regional climate models. Clim Chang 120:871–887. doi:10.1007/s10584-013-0845-x
Acknowledgments
The authors would like to thank the FP7 project IMPACT2C and all the contributing members for funding this study and providing climate data. Moreover, we thank Goncalo Gomes from JRC for his help with observed discharges and Alessandra Bianchi for GIS support. We finally think three anonymous reviewers for their helpful comments.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
ESM 1
(DOCX 11 mb)
Rights and permissions
About this article
Cite this article
Roudier, P., Andersson, J.C.M., Donnelly, C. et al. Projections of future floods and hydrological droughts in Europe under a +2°C global warming. Climatic Change 135, 341–355 (2016). https://doi.org/10.1007/s10584-015-1570-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10584-015-1570-4