The importance of aerosol scenarios in projections of future heat extremes

  • Yangyang Xu
  • Jean-François Lamarque
  • Benjamin M. Sanderson
Article

Abstract

Global climate models project a large increase in the frequency and intensity of heat extremes (HEs) during the 21st century under the Representative Pathway Concentration (RCP8.5) scenario. To assess the relative sensitivity of future HEs to the level of greenhouse gas (GHG) increases and aerosol emission decreases, we contrast Community Earth System Model (CESM)’s Large Ensemble projection under RCP8.5 with two additional ensembles: one keeping aerosol emissions at 2005 levels (but allowing all other forcings to progress as in RCP8.5) and the other using the RCP4.5 with lower GHG levels. By the late 21st century (2060–2080), the 3 °C warmer-than-present-day climate simulated under RCP8.5 could be 0.6 °C cooler (0.9 °C over land) if the aerosol emissions in RCP8.5 were not reduced, compared with a 1.2 °C cooling due to GHG mitigation (switching from RCP8.5 to RCP4.5). Aerosol induced cooling and associated HE reductions are relatively stronger in the Northern Hemisphere (NH), as opposed to GHG mitigation induced cooling. When normalized by the global mean temperature change in these two cases, aerosols have a greater effect than GHGs on all HE statistics over NH extra-tropical land areas. Aerosols are more capable of changing HE duration than GHGs in the tropics, explained by stronger dynamical changes in atmospheric circulation, despite weaker thermodynamic changes. Our results highlight the importance of aerosol scenario assumptions in projecting future HEs at regional scales.

Supplementary material

10584_2015_1565_MOESM1_ESM.docx (495 kb)
Fig S1(DOCX 495 kb)

References

  1. Anderson GB, Oleson KW, Jones B, Peng RD (2015). Predicting high-mortality heatwaves: Developing health-based models to predict whether a heatwave is high-mortality or less dangerous based on heatwave and community characteristics. Submitted to Climatic ChangeGoogle Scholar
  2. Brovkin V, Boysen L, Arora V, et al. (2013) Effect of anthropogenic land-use and land-cover changes on climate and land carbon storage in CMIP5 projections for the twenty-first century, J. Climate 26:6859–6881. doi:10.1175/JCLI-D-12-00623.1 CrossRefGoogle Scholar
  3. Deryng D, Conway D, Ramankutty N, et al. (2014) Global crop yield response to extreme heat stress under multiple climate change futures. Environ Res Lett 9:34011CrossRefGoogle Scholar
  4. Fang Y, Mauzerall DL, Liu J, et al. (2013) Impacts of 21st century climate change on global air pollution-related premature mortality. Clim Chang 121:239–253. doi:10.1007/s10584-013-0847-8 CrossRefGoogle Scholar
  5. Fischer EM, Sedláček J, Hawkins E, Knutti R (2014) Models agree on forced response pattern of precipitation and temperature extremes. Geophys Res Lett 41:2014GL062018. doi:10.1002/2014GL062018 Google Scholar
  6. Gettelman A, Liu X, Ghan SJ, et al. (2010) Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the community atmosphere model. J Geophys Res Atmos 115:D18216. doi:10.1029/2009JD013797 CrossRefGoogle Scholar
  7. Horton DE, Skinner CB, Singh D, Diffenbaugh NS (2014) Occurrence and persistence of future atmospheric stagnation events. Nat Clim Chang. doi:10.1038/NCLIMATE2272 Google Scholar
  8. Hu A, Xu Y, Tebaldi C, et al. (2013) Mitigation of short-lived climate pollutants slows sea-level rise. Nat Clim Chang 3:730–734CrossRefGoogle Scholar
  9. Jones B, O’Neill B (2013) Historically grounded spatial population projections for the continental United States. Environ Res Lett 8(4):044021CrossRefGoogle Scholar
  10. Jones B et al. (2015) Population exposure to heat-related extremes: Demographic change vs climate change. Submitted to Climatic Change.Google Scholar
  11. Kay JE, Deser C, Phillips A, et al. (2014) The community earth system model (CESM) large ensemble. A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability. Bull Am Meteorol Soc, Project. doi:10.1175/BAMS-D-13-00255.1 Google Scholar
  12. Kharin VV, Zwiers FW, Zhang X, Wehner M (2013) Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim Chang 119:345–357. doi:10.1007/s10584-013-0705-8 CrossRefGoogle Scholar
  13. Kovats RS, Hajat S (2008) Heat stress and public health: a critical review. Annu Rev Public Health 29:41–55. doi:10.1146/annurev.publhealth.29.020907.090843 CrossRefGoogle Scholar
  14. Lamarque J-F, Kyle GP, Meinshausen M, et al. (2011) Global and regional evolution of short-lived radiatively-active gases and aerosols in the representative concentration pathways. Clim Chang 109:191–212. doi:10.1007/s10584-011-0155-0 CrossRefGoogle Scholar
  15. Lau WKM, Kim KM (2011) The 2010 Pakistan flood and Russian heat wave: teleconnection of hydrometeorological extremes. J Hydrometeorol 13:392–403. doi:10.1175/JHM-D-11-016.1 CrossRefGoogle Scholar
  16. Lau NC, Nath MJ (2012) A model study of heat waves over North America: meteorological aspects and projections for the twenty-first century. J Clim 25:4761–4764. doi:10.1175/JCLI-D-11-00575.1 CrossRefGoogle Scholar
  17. Lawrence et al. (2015) Attribution of the biogeochemical and biogeophysical impacts of CMIP5. Submitted to Climatic ChangeGoogle Scholar
  18. Lehner F et al. (2015) Increasing risk of record-breaking summer temperatures with global warming and the potential for mitigation. Submitted to Climatic ChangeGoogle Scholar
  19. Leibensperger EM, Mickley LJ, Jacob DJ (2008) Sensitivity of US air quality to mid-latitude cyclone frequency and implications of 1980–2006 climate change. Atmos Chem Phys Discuss 8:12253–12282. doi:10.5194/acpd-8-12253-2008 CrossRefGoogle Scholar
  20. Leibensperger EM, Mickley LJ, Jacob DJ, et al. (2012) Climatic effects of 1950–2050 changes in US anthropogenic aerosols; part 2: climate response. Atmos Chem Phys 12:3349–3362. doi:10.5194/acp-12-3349-2012 CrossRefGoogle Scholar
  21. Levy H, Horowitz LW, Schwarzkopf MD, et al. (2013) The roles of aerosol direct and indirect effects in past and future climate change. J Geophys Res Atmos 118:4521–4532. doi:10.1002/jgrd.50192 CrossRefGoogle Scholar
  22. Lin L, et al. (2015) Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols. Submitted to Climatic ChangeGoogle Scholar
  23. Liu X, Easter RC, Ghan SJ, et al. (2012) Toward a minimal representation of aerosols in climate models: description and evaluation in the community atmosphere model CAM5. Geosci Model Dev 5:709–739. doi:10.5194/gmd-5-709-2012 CrossRefGoogle Scholar
  24. Lucas C, Timbal B, Nguyen H (2014) The expanding tropics: a critical assessment of the observational and modeling studies. Wiley Interdiscip Rev Clim Chang 5:89–112Google Scholar
  25. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997. doi:10.1126/science.1098704 CrossRefGoogle Scholar
  26. Meehl GA, Tebaldi C, Walton G, Easterling D, McDaniel L (2009) Relative increase of record high maximum temperatures compared to record low minimum temperatures in the U.S. Geophys Res Letts 36:L23701. doi:10.1029/2009GL040736
  27. Meehl GA, Washington WM, Arblaster JM, et al. (2013) Climate change projections in CESM1(CAM5) compared to CCSM4. J Clim 26:6287–6308. doi:10.1175/JCLI-D-12-00572.1 CrossRefGoogle Scholar
  28. Ming Y, Russell LM, Bradford DF (2005) Health and climate policy impacts on sulfur emission control. Rev Geophys 43:RG4001. doi:10.1029/2004RG000167 CrossRefGoogle Scholar
  29. Morrison H, Gettelman A (2008) A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part I: Description Numer tEsts J Clim 21:3642–3659. doi:10.1175/2008JCLI2105.1 Google Scholar
  30. B. O’Neill, A. Gettelman. (2015) Introduction to the special issue. Submitted to Climatic Change.Google Scholar
  31. Oleson et al., (2015) Avoided impacts of urban and rural heat and cold waves over the U.S. using large climate model ensembles for RCP8.5 and RCP4.5. Submitted to Climatic Change.Google Scholar
  32. Peterson TC, Heim RR, Hirsch R, et al. (2013) Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: state of knowledge. Bull Am Meteorol Soc 94:821–834. doi:10.1175/BAMS-D-12-00066.1 CrossRefGoogle Scholar
  33. Ramanathan V, Feng Y (2008) On avoiding dangerous anthropogenic interference with the climate system: formidable challenges ahead. Proc Natl Acad Sci U S A 105:14245–14250. doi:10.1073/pnas.0803838105 CrossRefGoogle Scholar
  34. Riahi K, Rao S, Krey V, et al. (2011) RCP8.5-a scenario of comparatively high greenhouse gas emissions. Clim Chang 109:33–57. doi:10.1007/s10584-011-0149-y CrossRefGoogle Scholar
  35. Rogelj J, Rao S, McCollum DL, et al. (2014) Air-pollution emission ranges consistent with the representative concentration pathways. Nat Clim Chang 4:446–450CrossRefGoogle Scholar
  36. Rotstayn LD, Plymin EL, Collier MA, et al. (2014) Declining aerosols in CMIP5 projections: effects on atmospheric temperature structure and midlatitude jets. J Clim 27:6960–6977. doi:10.1175/JCLI-D-14-00258.1 CrossRefGoogle Scholar
  37. Sanderson et al. (2015) A new large CESM initial condition ensemble to assess avoided impacts in a climate mitigation scenario. Submitted to Climatic ChangeGoogle Scholar
  38. Sillmann J, Kharin VV, Zwiers FW, et al. (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future Clim pRojections J Geophys Res Atmos 118:2473–2493. doi:10.1002/jgrd.50188 CrossRefGoogle Scholar
  39. Stott PA, et al (2011) Attribution of weather and climate-related extreme events. Climate Science for Serving Society: Research, Modelling and Prediction Priorities, J. W. Hurrell and G. Asrar, Eds., Springer.Google Scholar
  40. Tai APK, Mickley LJ, Jacob DJ, et al. (2012) Meteorological modes of variability for fine particulate matter (PM2.5) air quality in the United States: implications for PM2.5 sensitivity to climate change. Atmos Chem Phys 12:3131–3145. doi:10.5194/acp-12-3131-2012 CrossRefGoogle Scholar
  41. Tebaldi C, Wehner (2015). Benefits of mitigation for future heat extremes under RCP4.5 compared to RCP8.5. Submitted to Climatic ChangeGoogle Scholar
  42. Thomson AM, Calvin KV, Smith SJ, et al. (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Chang 109:77–94. doi:10.1007/s10584-011-0151-4 CrossRefGoogle Scholar
  43. van Vuuren DP, Meinshausen M, Plattner GK, et al. (2008) Temperature increase of 21st century mitigation scenarios. Proc Natl Acad Sci 105:15258–15262. doi:10.1073/pnas.0711129105 CrossRefGoogle Scholar
  44. von Storch H, Zwiers FW (1999) Statistical Analysis in Climate Research, CambridgeGoogle Scholar
  45. Wigley TML (1991) Could reducing fossil-fuel emissions cause global warming? Nature 349:503–506CrossRefGoogle Scholar
  46. Wuebbles D, Meehl G, Hayhoe K, et al. (2014) CMIP5 climate model analyses: climate extremes in the United States. Bull Am Meteorol Soc 95:571–583. doi:10.1175/BAMS-D-12-00172.1 CrossRefGoogle Scholar
  47. Xu Y, Xie SP (2015) Ocean mediation of tropospheric response to reflecting and absorbing aerosols. Atmos Chem Phys 15:5827–5833. doi:10.5194/acp-15-5827-2015 CrossRefGoogle Scholar
  48. Zhang J, Reid JS (2010) A decadal regional and global trend analysis of the aerosol optical depth using a data-assimilation grade over-water MODIS and level 2 MISR aerosol products. Atmos Chem Phys 10:10949–10963. doi:10.5194/acp-10-10949-2010 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations