Skip to main content
Log in

Regional modeling of large wildfires under current and potential future climates in Colorado and Wyoming, USA

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Regional analysis of large wildfire potential given climate change scenarios is crucial to understanding areas most at risk in the future, yet wildfire models are not often developed and tested at this spatial scale. We fit three historical climate suitability models for large wildfires (i.e. ≥ 400 ha) in Colorado and Wyoming using topography and decadal climate averages corresponding to wildfire occurrence at the same temporal scale. The historical models classified points of known large wildfire occurrence with high accuracies. Using a novel approach in wildfire modeling, we applied the historical models to independent climate and wildfire datasets, and the resulting sensitivities were 0.75, 0.81, and 0.83 for Maxent, Generalized Linear, and Multivariate Adaptive Regression Splines, respectively. We projected the historic models into future climate space using data from 15 global circulation models and two representative concentration pathway scenarios. Maps from these geospatial analyses can be used to evaluate the changing spatial distribution of climate suitability of large wildfires in these states. April relative humidity was the most important covariate in all models, providing insight to the climate space of large wildfires in this region. These methods incorporate monthly and seasonal climate averages at a spatial resolution relevant to land management (i.e. 1 km2) and provide a tool that can be modified for other regions of North America, or adapted for other parts of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232. doi:10.1111/j.1365-2664.2006.01214.x

    Article  Google Scholar 

  • Anderson R, Lew D, Townsend Peterson A (2003) Evaluating predictive models of species' distributions: criteria for selecting optimal models. Ecol Model 162:211–232

    Article  Google Scholar 

  • Barbero R, Abatzoglou JT, Larkin NK, et al. (2015) Climate change presents increased potential for very large fires in the contiguous United States. Int J Wildland Fire. doi:10.1071/WF15083

    Google Scholar 

  • Boulanger Y, Gauthier S, Burton PJ (2014) A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Can J For Res 44:345–376. doi:10.1139/cjfr-2013-0372

    Article  Google Scholar 

  • Brown TJ, Hall BL, Westerling AL (2004) The impact of twenty-first century climate change on wildland fire danger in the western United States: an applications perspective. Clim Chang 62:365–388. doi:10.1023/B:CLIM.0000013680.07783.de

    Article  Google Scholar 

  • Cook BI, Ault TR, Smerdon JE (2015) Unprecedented 21st century drought risk in the American southwest and central plains. Sci Adv 1–7. doi:10.1126/sciadv.1400082

  • Danielson J, Gesch D (2011) Global multi-resolution terrain elevation data 2010 (GMTED2010): U.S. Geological Survey Open-File Report 2011–1073.

  • Dennison PE, Brewer SC, Arnold JD, Moritz MA (2014) Large wildfire trends in the western United States, 1984–2011. Geophys Res Lett 41:2928–2933. doi:10.1002/2013GL058954.Received

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S, et al. (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop) 36:27–46. doi:10.1111/j.1600-0587.2012.07348.x

    Article  Google Scholar 

  • Eidenshink J, Schwind B, Brewer K, et al. (2007) A project for monitoring trends in burn severity. Fire Ecol 3:3–21

    Article  Google Scholar 

  • Evans JS, Oakleaf J, Cushman SA, Theobald D (2014) An ArcGIS Toolbox for Surface Gradient and Geomorphometric Modeling, v. 2.0. http://evansmurphy.wix.com/evansspatial.

  • Franklin J, Davis FW, Ikegami M, et al. (2013) Modeling plant species distributions under future climates: how fine scale do climate projections need to be? Glob Chang Biol 19:473–483. doi:10.1111/gcb.12051

    Article  Google Scholar 

  • Freeman EA, Moisen G (2008) PresenceAbsence: an R package for presence absence analysis. J Stat Softw 23:1–31. doi:10.1038/nmat2803

    Article  Google Scholar 

  • Freeman JP, Stohlgren TJ, Hunter ME, et al. (2007) Rapid assessment of postfire plant invasions in coniferous forests of the western United States. Ecol Appl 17:1656–1665

    Article  Google Scholar 

  • Freire J, Silva CT (2012) Making computations and publications reproducible with VisTrails. Comput Sci Eng 14:18–25

    Article  Google Scholar 

  • Friedman J (1991) Multivariate adaptive regression splines. Ann Stat 19:1–67

    Article  Google Scholar 

  • Hansen AR, Sutera A (1995) The role of topography in the low-frequency variability of the large-scle midlatitude circulation. J Atmos Sci 52:2498–2508

    Google Scholar 

  • Hurteau M (2014) Projected effects of climate and development on California wildfire emissions through 2100. Environ Sci Technol 48:2298–2304

    Google Scholar 

  • IPCC (2013) Climate Change 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds T.F. Stocker, D. Qin, G.K. Plattner, M. Tig- nor, S.K. Allen, J. Boschung, A.).

  • Kipfmueller KF, Larson ER, George SS (2012) Does proxy uncertainty affect the relations inferred between the Pacific decadal oscillation and wildfire activity in the western United States? Geophys Res Lett 39:1–5. doi:10.1029/2011GL050645

    Article  Google Scholar 

  • Knutti R, Masson D, Gettelman A (2013) Climate model genealogy: generation CMIP5 and how we got there. Geophys Res Lett 40:1194–1199. doi:10.1002/grl.50256

    Article  Google Scholar 

  • Litschert SE, Brown TC, Theobald DM (2012) Historic and future extent of wildfires in the southern Rockies ecoregion, USA. For Ecol Manag 269:124–133. doi:10.1016/j.foreco.2011.12.024

    Article  Google Scholar 

  • Liu C, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. J Biogeogr 40:778–789. doi:10.1111/jbi.12058

    Article  Google Scholar 

  • Liu Y, Stanturf J, Goodrick S (2010) Trends in global wildfire potential in a changing climate. For Ecol Manag 259:685–697. doi:10.1016/j.foreco.2009.09.002

    Article  Google Scholar 

  • Lukas J, Barsugli J, Doesken N, et al (2014) Climate Change in Colorado: A Synthesis to Support Water Resources Management and Adaptation. A Report for the Colorado Water Conservation Board. University of Colorado, Boulder, CO. Available online at: http://wwa.colorado.edu/climate/co2014report/.

  • Marmion M, Parviainen M, Luoto M, et al. (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69. doi:10.1111/j.1472-4642.2008.00491.x

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, London

    Book  Google Scholar 

  • Morisette JT, Jarnevich CS, Holcombe TR, et al. (2013) VisTrails SAHM: visualization and workflow management for species habitat modeling. Ecography (Cop) 36:129–135. doi:10.1111/j.1600-0587.2012.07815.x

    Article  Google Scholar 

  • Moritz MA, Parisien M-A, Batllori E, et al. (2012) Climate change and disruptions to global fire activity. Ecosphere 3:1–22

    Article  Google Scholar 

  • Muscarella R, Galante PJ, Soley-Guardia M, et al. (2014) ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for maxent ecological niche models. Methods Ecol Evol. doi:10.1111/2041-210X.12261

    Google Scholar 

  • National Oceanic and Atmospheric Administration (2015) National Weather Service Climate Prediction Center. In: Hist. El Nino/La Nina episodes. www.cpc.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml. Accessed 1 Jan 2015

  • Omernik J (1987) Ecoregions of the conterminous United States. Ann Assoc Am Geogr 77:118–125

    Article  Google Scholar 

  • Parisien M, Moritz M (2009) Environmental controls on the distribution of wildfire at multiple spatial scales. Ecol Monogr 79:127–154

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. doi:10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Risbey JS, Lewandowsky S, Langlais C, et al. (2014) Well-estimated global surface warming in climate projections selected for ENSO phase. Nat Clim Chang 4:1–7. doi:10.1038/NCLIMATE2310

    Article  Google Scholar 

  • Schimel D, Braswell BH (2005) The role of mid-latitude mountains in the carbon cycle: global perspective and a western U.S. case study. In: Huber UM, Bugmann HKM, Reasoner MA (eds) Global change and mountain regions: an overview of current knowledge. Springer, Dordrecht, Netherlands, pp 449–456

  • Schoennagel T, Veblen TT, Romme WH, et al. (2005) ENSO and PDO variability affect drought-induced fire occurrence in rocky mountain subalpine forests. Ecol Appl 15:2000–2014. doi:10.1890/04-1579

    Article  Google Scholar 

  • Stambaugh MC, Guyette RP (2008) Predicting spatio-temporal variability in fire return intervals using a topographic roughness index. For Ecol Manag 254:463–473. doi:10.1016/j.foreco.2007.08.029

    Article  Google Scholar 

  • Stavros EN, Abatzoglou JT, Mckenzie D, Larkin NK (2014) Regional projections of the likelihood of very large wildland fires under a changing climate in the contiguous western United States. Clim Chang 126:455–468. doi:10.1007/s10584-014-1229-6

    Article  Google Scholar 

  • Stephens SL (2005) Forest fire causes and extent on United States forest service lands. Int J Wildland Fire 14:213–222. doi:10.1071/WF04006

    Article  Google Scholar 

  • Swetnam TW, Betancourt JL (2010) Mesoscale Disturbance and Ecological Response to Decadal Climatic Variability in the American Southwest. In: Stoffel M et al (ed) Tree Rings and Natural Hazards: A State-of-the-Art. Springer, pp 329–359

  • Theobald DM, Romme WH (2007) Expansion of the US wildland-urban interface. Landsc Urban Plan 83:340–354

    Article  Google Scholar 

  • Trouet V, Taylor AH, Wahl ER, et al. (2010) Fire-climate interactions in the American west since 1400 CE. Geophys Res Lett 37:1–5. doi:10.1029/2009GL041695

    Article  Google Scholar 

  • van Vuuren DP, Edmonds J, Kainuma M, et al. (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31. doi:10.1007/s10584-011-0148-z

    Article  Google Scholar 

  • Visser H, De Nijs T (2006) The map comparison kit. Environ Model Softw 21:346–358. doi:10.1016/j.envsoft.2004.11.013

    Article  Google Scholar 

  • Wang T, Hamann A, Spittlehouse DL, Murdock TQ (2012) ClimateWNA—high-resolution spatial climate data for western North America. J Appl Meteorol Climatol 51:16–29. doi:10.1175/JAMC-D-11-043.1

    Article  Google Scholar 

  • West AM, Kumar S, Wakie T, et al. (2015) Using high-resolution future climate scenarios to forecast bromus tectorum invasion in rocky mountain national park. PLoS One. doi:10.1371/journal.pone.0117893

    Google Scholar 

  • Westerling a L, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western U.S. forest wildfire activity. Science 313:940–943. doi:10.1126/science.1128834

    Article  Google Scholar 

  • Westerling AL, Swetnam TW (2003) Interannual to decadal drought and wildfire in the western United States. EOS Trans Am Geophys Union 84:545. doi:10.1029/2003EO490001

    Article  Google Scholar 

  • Westerling AL, Turner MG, Smithwick E a H, et al (2011) Continued warming could transform greater Yellowstone fire regimes by mid-21st century. Proc Natl Acad Sci U S A 108:13165–13170. doi:10.1073/pnas.1110199108

  • Whitman E, Batllori E, Parisien M-A, et al. (2015) The climate space of fire regimes in north-western North America. J Biogeogr 49:1736–1749. doi:10.1111/jbi.12533

    Article  Google Scholar 

  • Wing MG, Long J (2015) A 25-year history of spatial and temporal trends in wildfire activity in Oregon and Washington, U.S.A. Mod Appl Sci 9:117–132. doi:10.5539/mas.v9n3p117

    Article  Google Scholar 

  • Yue X, Mickley LJ, Logan J a, Kaplan JO (2013) Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century. Atmos Environ 77:767–780. doi:10.1016/j.atmosenv.2013.06.003

    Article  Google Scholar 

Download references

Acknowledgments

We thank William H. Romme for his insight and edits on an early draft of this manuscript. Special thanks to the USGS Invasive Species Program for support. Amanda West acknowledges support from the National Needs Fellowship program of National Institute of Food and Agriculture, U.S. Department of Agriculture (Award No.- 2010-03280). Finally, the authors would like to thank anonymous journal reviewers. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda M. West.

Electronic supplementary material

Appendix 1

(DOCX 21 kb)

Appendix 2

(DOCX 970 kb)

Appendix 3

(DOCX 20 kb)

Appendix 4

(DOCX 16 kb)

Appendix 5

(DOCX 1349 kb)

Appendix 6

(DOCX 1.58 mb)

Appendix 7

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

West, A.M., Kumar, S. & Jarnevich, C.S. Regional modeling of large wildfires under current and potential future climates in Colorado and Wyoming, USA. Climatic Change 134, 565–577 (2016). https://doi.org/10.1007/s10584-015-1553-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-015-1553-5

Keywords