Climatic Change

, Volume 140, Issue 1, pp 63–77

Promoting sustainable local development of rural communities and mitigating climate change: the case of Mexico’s Patsari improved cookstove project

  • Victor M. Berrueta
  • Montserrat Serrano-Medrano
  • Carlos García-Bustamante
  • Marta Astier
  • Omar R. Masera


Improved cookstoves have been identified in Mexico as a key opportunity to advance sustainable local development priorities in disadvantaged regions while mitigating climate change. This paper reviews the Patsari Cookstove Project initiated in 2003 by an NGO, Interdisciplinary Group on Appropriate Rural Technology (GIRA). The project applied an interdisciplinary and participative user-centered approach to disseminate improved cookstoves in rural Mexico, with a special focus on indigenous and poor rural communities. To date, GIRA and the Patsari Network have disseminated thousands of stoves using a “training to trainers” model. Benefits from the project include tangible improvements in users’ health, as well as savings in time and money expended on fuelwood procurement and use. The project has also documented substantive environmental benefits from significant mitigation of greenhouse gas (GHG) emissions associated with traditional open fires. To sustain scaling up efforts over the long-term, two networks have been created: The Patsari Network, which includes several organizations promoting Patsari stoves for household users, and the Tsiri Network, which supports local food security and the empowerment of indigenous women through the promotion of institutional cookstoves. Through appropriately designed and implemented local interventions, the project demonstrates that the goals of advancing sustainable local development in rural areas and climate change mitigation may not be contradictory, and may in fact reinforce one another.

Supplementary material

10584_2015_1523_MOESM1_ESM.docx (29 kb)
ESM 1(DOCX 28 kb)


  1. Anenberg SC, Schwartz J, ShindellD AM, Faluvegi G, Klimont Z, Janssens-Maenhout G, Pozzoli L, Van Dingenen R, Vignati E, Emberson L, Muller NZ, West JJ, Williams M, Demkine V, Hicks WK, Kuylenstierna J, Raes F, Ramanathan V (2012) Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls. Environ Health Perspect 120(6):831–839CrossRefGoogle Scholar
  2. Armendariz C, Edwards R, Johnson M, Zuk M, Rojas L, Díaz-Jiménez R, Riojas H, Masera O (2008) Reduction in personal exposures to particulate matter and carbon monoxide as a result of the installation of a Patsari improved cook stove in Michoacan Mexico. Indoor Air 18:2Google Scholar
  3. Astier M (2004) Estudio sistémico de la elaboración de tortilla tradicional: su impacto en el uso de los recursos naturales en la Regíón de Pátzcuaro-Zirahuén. GIRA, A.C., MichoacanGoogle Scholar
  4. Astier M, Barrera N (2009) Small tortilla enterprises a key issue for maize diversity conservation. American Association of Geographers Annual Meeting. Paper Session: Geographic Contributions to Agrobiodiversity Conservation III. 3/24/09Google Scholar
  5. Bailis R, Berrueta V, Chengappa C, Dutta K, Edwards R, Masera O, Still D, Smith K (2007) Performance testing for monitoring improved biomass stove interventions: experiences of the Household Energy and Health Project. Energy Sustain Dev 11(2):57–70CrossRefGoogle Scholar
  6. Bailis R, Drigo R, Ghilardi A, Masera O (2015) The carbon footprint of traditional woodfuels. Nat Clim Chang. doi:10.1038/NCLIMATE2491 Google Scholar
  7. Bates L, Bruce N, Theuri D, Owalla H, Amatya P, Malla MB, Hood A (2005) What should we be doing about kitchen smoke? Energy Sustain Dev 9(1):7–15CrossRefGoogle Scholar
  8. Berrueta V, Magallanes AB (2012) Leña para uso doméstico en comunidades P’urhépechas de Michoacán: acceso, utilización e implicaciones sociales. En: Argueta A, Gómez Salazar M, Navia J (Coords) Conocimiento tradicional, innovación y reapropiación social. Editorial Siglo XXI, MexicoGoogle Scholar
  9. Berrueta V, Edwards R, Masera O (2008) Energy performance of woodburning cookstoves in Michoacán Mexico. Renew Energy 33:5CrossRefGoogle Scholar
  10. Bruce N, Perez-Padilla R, Albalak R (2000) Indoor air pollution in developing countries: a major environmental and public health challenge. Bull World Health Organ 78:1078–1092Google Scholar
  11. CDI, Comisión Nacional para el desarrollo de los pueblos indígenas (2006) Regiones indígenas de México,
  12. Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H, Gabrielle B, Eng AG, Lucht W, Mapako M, Masera O, McIntyre T, Minowa T, Pingoud K (2011) Bioenergy, in IPCC special report on renewable energy sources and climate change mitigation. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) Cambridge University Press, CambridgeGoogle Scholar
  13. García-Frapolli E, Schilmann A, Berrueta V, Riojas H, Edwards R, Johnson M, Guevara-Sanginés A, Armendariz C, Masera O (2010) Beyond fuelwood savings: valuing the economic benefits of introducing improved biomass cookstoves in the Purépecha region of Mexico. Ecol Econ 69:12CrossRefGoogle Scholar
  14. Ghilardi A, Guerrero G, Masera O (2009) A GIS-based methodology for high lighting fuelwood supply-demand balances at the local level: a case study for central Mexico. Biomass Bioenergy 33:957–972CrossRefGoogle Scholar
  15. Gold Standard (2014) Public call for stakeholder comments: the gold standard foundation’s proposed expansion of scope to certify emission reductions from black carbon. Gold Standard, UKGoogle Scholar
  16. INDC-México, Intended Nationally Determined Contribution Mexico (2015) México, Gobierno de la Republica, marzo 2015
  17. Islas J, Manzini F, Masera O (2007) A prospective study of bioenergy use in Mexico. Energy 32:2306–2330CrossRefGoogle Scholar
  18. Johnson M, Edwards R, Alatorre-Frenk C, Masera O (2008) In-field greenhouse gas emissions from cookstoves in rural Mexican households. Atmos Environ 42(6):1206–1222CrossRefGoogle Scholar
  19. Johnson M, Edwards R, Ghilardi A, Berrueta V, Gillen D, Alatorre-Frenk C, Masera O (2009a) Quantifcation of carbon savings from improved biomass cookstove projects. Environ Sci Technol 43(7):2456–2462CrossRefGoogle Scholar
  20. Johnson T, Alatorre C, Romo Z, Liu F (2009b) Low-carbon development for Mexico. World Bank, WashingtonCrossRefGoogle Scholar
  21. Lazos E (2014) Consideraciones socioeconómicas y culturales en la controvertida introducción del maíz transgénico: el caso de Tlaxcala. Sociológica 29(83):1–20Google Scholar
  22. Lerner AM, Appendini K (2011) Dimensions of Peri-Urban Maize production in the Toluca-Atlacomulco valley, Mexico. J Lat Am Geogr 10(2):87–106CrossRefGoogle Scholar
  23. Lerner AM, Eakin H, Sweeney S (2013) Understanding peri-urban maize production through an examination of household livelihoods in the Toluca Metropolitan area. Mex J Rural Stud 30:50–63Google Scholar
  24. Lim S et al (2013) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2224–2260CrossRefGoogle Scholar
  25. Magallanes A (2006) Estudio de Percepciones sobre el Cambio de Vida a Partir del Uso de Estufas Mejoradas, internal report. GIRA, A.C., MichoacanGoogle Scholar
  26. Masera O, Saatkamp BD, Kammen D (2000) From linear fuel switching to multiple cooking strategies: a critique and alternative to the energy ladder model. World Dev 28(12):2083–2103CrossRefGoogle Scholar
  27. Masera O, Guerrero G, Ghilardi A, Velázquez A, Mas J, Ordóñez M, Drigo R, Trossero MA (2004) Fuelwood “Hot Spots” in México: a case study using WISDOM – Woodfuel Integrated Supply-Demand Overview Mapping. Wood Energy Programme – FAO, RomeGoogle Scholar
  28. Masera O, Ghilardi A, Guerrero G, Velázquez A, Mas J, Ordóñez M, Drigo R, Trossero M (2005a) Fuelwood “hot spots” in Mexico: A case study using WISDOM. FAO Reports, Wood Energy Peogram, Forest Products Division, FAO, RomeGoogle Scholar
  29. Masera O, Díaz-Jiménez R, Berrueta V (2005b) From cookstoves to cooking systems: the integrated program on sustainable household energy use in Mexico. Energy Sustain Dev 9(1):25–36CrossRefGoogle Scholar
  30. Masera O, Edwards R, Armendáriz C, Berrueta V, Johnson M, Rojas L, Riojas H (2007) Impact of Patsari improved cookstoves on indoor air quality in Michoacan, Mexico. Energy Sustain Dev 11:45–56CrossRefGoogle Scholar
  31. Masera-Astier OX, Astier M (2014) La Red Tsiri: una experiencia de sistemas alimentarios sustentables. LEISA Rev Agroecología 30(1):22–23Google Scholar
  32. Orozco-Ramírez, Q. Barrera, N. Astier, M, Masera O (2010) El sistema maíz-tortilla en el estado de Michoacán. En: Seefoó Luján JJ, Keilbach NM (Editores) Ciencia y paciencia campesina. El maíz en Michoacán. COLMICH, Gobierno del Estado de Michoacán. pp.119–136 y 287Google Scholar
  33. Pilcher J (1998) Que Vivan Los Tamales! Food and the making of the Mexican identity. University of New Mexico, AlbuquerqueGoogle Scholar
  34. Pine K, Edwards R, Masera O, Schilmann A, Riojas-Rodriguez R (2011) Adoption and use of improved biomass stoves in rural Mexico. Energy Sustain Dev 15:176–183CrossRefGoogle Scholar
  35. Preibisch KL, Rivera Herrejón G, Wiggins SL (2002) Defending food security in a free-market economy: the gendered dimensions of restructuring in rural Mexico. Human Organ 61:68–79CrossRefGoogle Scholar
  36. Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbón. Nat Geosci 1:221–227CrossRefGoogle Scholar
  37. Riojas H, Romieu I, Marron-Mares T, Rodríguez-Dozal S, Masera O (2006) Health impact assessment due the introduction of improved stoves in Michoacan, Mexico, International Conference, Paris, September 2–6, Conference Abstracts Supplement, Epidemiology, 17(6) Supplement, pp. S226-S227Google Scholar
  38. Roden CA, Bond T, Conway S, Osorto A, MacCarty N, Still D (2009) Laboratory and field investigations of particulate and carbon monoxide emissions from traditional and improved cookstoves. Atmos Environ 43(6):1170–1181CrossRefGoogle Scholar
  39. Romieu I, Riojas-Rodriguez H, Marron-Mares AT, Schilmann A, Perez-Padilla R, Masera O (2009) Improved biomass stove intervention in rural Mexico: impact on the respiratory health of women. Am J Respir Crit Care Med 180(7):649–656CrossRefGoogle Scholar
  40. Serrano-Medrano M, Arias-Chalico T, Ghilardi A, Masera O (2014) Spatial and temporal projection of fuelwood and charcoal consumption in Mexico. Energy Sustain Dev 19:39–46CrossRefGoogle Scholar
  41. Smith K (2003) Indoor air pollution and acute respiratory infections. Indian Pediatric 40(9):815–819Google Scholar
  42. Troncoso K, Castillo A, Masera O, Merino L (2007) Social perceptions about a technological innovation for fuelwood cooking: case study in rural Mexico. Energy Policy 35(5):2799–2810CrossRefGoogle Scholar
  43. World Development Report (2005) A better investment climate for everyone. The World Bank and Oxford University Press, New York, NYGoogle Scholar
  44. Zuk M, Rojas L, Blanco S, Serrano P, Cruz J, Angeles F, Tzintzun G, Armendariz C, Edwards RD, Johnson M (2007) The impact of improved wood-burning stoves on fine particulate matter concentrations in rural Mexican homes. Expo Sci Environ Epidemiol 17:224–232CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Victor M. Berrueta
    • 1
  • Montserrat Serrano-Medrano
    • 2
  • Carlos García-Bustamante
    • 3
  • Marta Astier
    • 4
  • Omar R. Masera
    • 2
  1. 1.Interdisciplinary Group on Appropriate Rural Technology (GIRA)PatzcuaroMexico
  2. 2.Institute for Ecosystem and Sustainability ResearchNational Autonomous University of Mexico (UNAM)MoreliaMexico
  3. 3.Escuela Nacional de Estudios Superiores Unidad MoreliaNational Autonomous University of Mexico (UNAM)MoreliaMexico
  4. 4.Environmental Geography Research CenterNational Autonomous University of Mexico (UNAM)MoreliaMexico

Personalised recommendations