Climatic Change

, Volume 132, Issue 4, pp 661–675 | Cite as

District specific, in silico evaluation of rice ideotypes improved for resistance/tolerance traits to biotic and abiotic stressors under climate change scenarios

  • L. Paleari
  • G. Cappelli
  • S. Bregaglio
  • M. Acutis
  • M. Donatelli
  • G. A. Sacchi
  • E. Lupotto
  • M. Boschetti
  • G. Manfron
  • R. Confalonieri


Using crop models as supporting tools for analyzing the interaction between genotype and environment represents an opportunity to identify priorities within breeding programs. This study represents the first attempt to use simulation models to define rice ideotypes improved for their resistance to biotic stressors (i.e., diseases); moreover, it extends approaches for evaluating the impact of changes in traits for tolerance to abiotic constraints (temperature shocks inducing sterility). The analysis—targeting the improvement of 34 varieties in six Italian rice districts—was focused on the impact of blast disease, and of pre-flowering cold- and heat-induced spikelet sterility. In silico ideotypes were tested at 5-km spatial resolution under current conditions and climate change scenarios centered on 2020, 2050, and 2085, derived according to the projections of two general circulation models–Hadley and NCAR–for two IPCC emission scenarios–A1B and B1. The study was performed using a dedicated simulation platform, i.e., ISIde, explicitly developed for ideotyping studies. The ideotypes improved for blast resistance obtained clear yield increases for all the combinations GCM × emission scenario × time horizon, i.e., 12.1 % average yield increase under current climate, although slightly decreasing for time windows approaching the end of the century and with a marked spatial heterogeneity in responses across districts. Concerning abiotic stressors, increasing tolerance to cold-induced sterility would lead to a substantial yield increase (+9.8 %) only for Indica-type varieties under current climate, whereas no increases are expected under future conditions and, in general, for Japonica-type varieties. Given the process-based logic behind the models used—supporting coherence of model responses under future scenarios—this study provides useful information for rice breeding programs to be realized in the medium-long term.


General Circulation Model Emission Scenario Blast Resistance Crop Model Global Solar Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study has been partially funded under the project RISINNOVA (Integrated genetic and genomic approaches for new Italian rice breeding strategies), funded by Ager (, and under the EU FP7 project MODEXTREME (Grant Agreement No. 613817).

Supplementary material

10584_2015_1457_MOESM1_ESM.docx (172 kb)
ESM 1 (DOCX 171 kb)
10584_2015_1457_MOESM2_ESM.docx (45 kb)
ESM 2 (DOCX 45.3 kb)


  1. Acutis M, Donatelli M, Stöckle CO (1998) Comparing the performance of three weather generators. Proceedings of the 5th ESA Congress, Nitra, Slovak Republic, 117-118Google Scholar
  2. Aggarwal PK, Kropff MJ, Cassman KG, Ten Berge HFM (1997) Simulating genotypic strategies for increasing rice yield potential in irrigated, tropical environments. Field Crop Res 51:5–17. doi: 10.1016/S0378-4290(96)01044-1 CrossRefGoogle Scholar
  3. Alpuerto VLEB, Norton GW, Alwang J, Ismail AM (2009) Economic impact analysis of marker-assisted breeding for tolerance to salinity and phosphorous deficiency in rice. Rev Agir Econ 31:779–792. doi: 10.1111/j.1467-9353.2009.01466.x CrossRefGoogle Scholar
  4. Andaya VC, Mackill DJ (2003) QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica × indica cross. Theor Appl Genet 106:1084–1090. doi: 10.1007/s00122-002-1126-7 Google Scholar
  5. Ballini E, Morel JP, Droc G, Price A, Courtois B, Notteghem JL, Tharreau D (2008) A genome-wide meta-analysis of rice blast resistance genes and QTLs provides new insights into partial and complete resistance. Mol Plant Microbe Interact 21:859–868. doi: 10.1094/MPMI-21-7-0859 CrossRefGoogle Scholar
  6. Bastiaans L (1991) Ratio between virtual and visual lesion size as a measure to describe reduction in leaf photosynthesis of rice due to blast. Phytopathology 81:611–615CrossRefGoogle Scholar
  7. Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–244. doi: 10.1126/science.1164363 CrossRefGoogle Scholar
  8. Bingham IJ, Topp CFE (2009) Potential contribution of selected canopy traits to the tolerance of foliar disease by spring barley. Plant Pathol 58:1010–1020CrossRefGoogle Scholar
  9. Boote KJ, Kropff MJ, Bindraban PS (2001) Physiology and modelling of traits in crop plants: implications for genetic improvement. Agricult Syst 70:395–420. doi: 10.1016/S0308-521X(01)00053-1 CrossRefGoogle Scholar
  10. Boschetti M, Stroppiana D, Briovio PA, Bocchi S (2009) Multi-year monitoring of rice corp phenology through time series analysis of MODIS images. Int J Remote Sens 30:4643–4662. doi: 10.1080/01431160802632249 CrossRefGoogle Scholar
  11. Bregaglio S, Donatelli M (2015) A set of software components for the simulation of plant airborne diseases. Environ. Modell. Softw., Resubmitted after revisionGoogle Scholar
  12. Bregaglio S, Titone P, Cappelli G, Donatelli M, Confalonieri R (2013) Adaptation of the Diseases platform to simulate blast impact on rice in Italy. 4th AGMIP Annual Meeting, New York, October 28th-30th, [Accessed 10/03/2015]
  13. Chakraborty S (2013) Migrate or evolve: options for plant pathogens under climate change. Glob Chang Biol 19:1985–2000CrossRefGoogle Scholar
  14. Choudhury BJ (2001) Modelling radiation- and carbon-use efficiencies of maize, sorghum, and rice. Agric For Meteorol 106:317–330. doi: 10.1016/S0168-1923(00)00217-3 CrossRefGoogle Scholar
  15. Collins WD, Hack JJ, Boville BA, Rasch PJ (2004) Description of the NCAR Community Atmosphere Model (CAM3.0). Technical note TN-464 + STR. National Center for Atmospheric Research, BoulderGoogle Scholar
  16. Confalonieri R (2012) Combining a weather generator and a standard sensitivity analysis method to quantify the relevance of weather variables on agrometeorological models outputs. Theor Appl Climatol 108:19–30. doi: 10.1007/s00704-011-0510-0 CrossRefGoogle Scholar
  17. Confalonieri R, Mariani L, Bocchi S (2005) Analysis and modelling of water and near water temperatures in flooded rice (Oryza sativa L.). Ecol Model 183:269–280. doi: 10.1016/j.ecolmodel.2004.07.031 CrossRefGoogle Scholar
  18. Confalonieri R, Rosenmund AS, Baruth B (2009) An improved model to simulate rice yield. Agron Sustain Dev 29:463–474. doi: 10.1051/agro/2009005 CrossRefGoogle Scholar
  19. Confalonieri R, Bregaglio S, Cappelli G, Francone C, Carpani M, Acutis M, El Aydam M, Niemeyer S, Balaghi R, Domng Q (2013) Wheat modelling in Morocco unexpectedly reveals predominance of photosynthesis versus leaf area expansion plant traits. Agron Sustain Dev 33:393–403. doi: 10.1007/s13593-012-0104-y CrossRefGoogle Scholar
  20. Coppola E, Giorgi F (2010) An assessment of temperature and precipitation change projections over Italy from recent global and regional climate model simulations. Int J Clim 30:11–32. doi: 10.1002/joc.1867 Google Scholar
  21. Covey C, AchutaRao KM, Cubasch U, Jones PD, Lambert SJ, Mann ME, Phillips TJ, Taylor KE (2003) An overview of results from the Coupled Model Intercomparison Project. Glob Planet Chang 37:103–133. doi: 10.1016/S0921-8181(02)00193-5 CrossRefGoogle Scholar
  22. Donatelli M, Confalonieri R (2011) Biophysical models for cropping system simulation. In: Flichman G (ed) Bio-Economic Models applied to Agricultural Systems, Springer, pp 59-87Google Scholar
  23. Donatelli M, Rizzoli AE (2008) A design for framework-independent model components of biophysical systems. In: Proceedings of the International Congress on Environmental Modelling and Software (iEMSs ’08), vol. 2, pp. 727-734, Barcelona, SpainGoogle Scholar
  24. Dreni L, Gonzales Schain N, Pilatone A, Jagadish K, Heuer S, Colombo L, Pasquariello M, Francia E, Pucciariello C, Perata P, Pecchioni N, Kater M (2012) Thermal stress responses in rice. In: Proceeding from the International Workshop Crop Improvement in a Changing Environment: the RISINNOVA Project for sustainable rice production in Italy, Venice, Italy, pp 11Google Scholar
  25. Drewry DT, Kumar P, Long S (2014) Simultaneous improvement in productivity, water use, and albedo through crop structural modification. Glob Chang Biol 20:1955–1967. doi: 10.1111/gcb.12567 CrossRefGoogle Scholar
  26. Dulli S, Furini S, Peron E (2009) Data Mining. Springer, BerlinCrossRefGoogle Scholar
  27. Duncan WG, Loomis RS, Williams WA, Hanau R (1967) A model for simulating photosynthesis in plant communities. Hilgardia 38:181–205CrossRefGoogle Scholar
  28. Faivre-Rampant O, Bruschi G, Abbruscato P, Cavigiolo S, Picco AM, Borgo L, Lupotto E, Piffanelli P (2011) Assessment of genetic diversity in Italian rice germplasm related to agronomic traits and blast resistance (Magnaporthe oryzae). Mol Breed 27:233–246. doi: 10.1007/s11032-010-9426-0 CrossRefGoogle Scholar
  29. Gordon C, Cooper C, Senior CA, Banks H (2000) The simulation of SST, sea ice extent and ocean heat transport in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168. doi: 10.1007/s003820050010 CrossRefGoogle Scholar
  30. Hammer GL, Kropff MJ, Sinclair TR, Porter JR (2002) Future contribution of crop modelling from heuristic and supporting decision making to understanding genetic regulation and aiding crop improvement. Eur J Agron 18:15–31. doi: 10.1016/S1161-0301(02)00093-X CrossRefGoogle Scholar
  31. Herndl M, Shan C, Wang P, Graeff S, Claupein W (2007) A model based ideotyping approach for wheat under different environmental conditions in North China Plain. Agric Sci China 6:1426–1436. doi: 10.1016/S1671-2927(08)60004-8 CrossRefGoogle Scholar
  32. IPCC (2007) Climate Change 2007: The Physical Science Basis, Contribution of working group 1 to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University PressGoogle Scholar
  33. IPCC (2013) Summery for Policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report Of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  34. Lobell DB, Schlenker W, Costa-Roberts J (2012) Climate trends and global crop production since 1980. Science 333:616–620CrossRefGoogle Scholar
  35. Matsui T, Omasa K, Horie T (2001) The difference in sterility due to high temperatures during the flowering period among japonica rice varieties. Plant Prod Sci 4:90–93CrossRefGoogle Scholar
  36. Oerke EC (2006) Crop losses to pests. J Agr Sci 144:31–43. doi: 10.1017/S0021859605005708 CrossRefGoogle Scholar
  37. Raza A, Friedel JK, Moghaddam A, Ardakani MR, Loiskandl W, Himmelbauer M, Bodner G (2013) Modeling growth of different lucerne cultivars and their effect on soil water dynamics. Agric Water Manag 119:100–110. doi: 10.1016/j.agwat.2012.12.006 CrossRefGoogle Scholar
  38. Roumen E, Levy M, Notteghem JL (1997) Characterization of the European pathogen population of Magnaporthe grisea by DNA fingerprinting and pathotype analysis. Eur J Plant Pathol 103:363–371. doi: 10.1023/A:1008697728788 CrossRefGoogle Scholar
  39. Russo S (1994) Breeding and genetical research in Italian rice. In: Clément G, Cocking EC (ed) FAO MedNet rice: breeding and biotechnology groups: proceedings of the workshops Ciheam-Iamm, Montpellier, pp 43–47Google Scholar
  40. Sanchez B, Rasmussen A, Porter JR (2014) Temperatures and the growth and development of maize and rice: a review. Glob Chang Biol 20:408–417. doi: 10.1111/gcb.12389 CrossRefGoogle Scholar
  41. Semenov MA, Shewry PR (2011) Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Sci Rep 1:1–5. doi: 10.1038/srep00066 1 CrossRefGoogle Scholar
  42. Semenov MA, Stratonovitch P (2013) Designing high-yielding wheat ideotypes for a changing climate. Food and Energy Secur 2:185–196. doi: 10.1002/fes3.34 CrossRefGoogle Scholar
  43. Singh VK, Singh A, Singh SP, Ellura RK, Choudharyc V, Sarkelc S, Singha D, Gopala Krishnana S, Nagarajand M, Vinodd KK, Singhc UD, Rathoree R, Prashanthif SK, Agrawalg PK, Bhattg PC, Mohapatrah T, Prabhua KV, Singha AK (2012) Incorporation of blast resistance into “PRR78”, an elite Basmati rice restorer line, through marker assisted backcross breeding. Field Crop Res 128:8–16. doi: 10.1016/j.fcr.2011.12.003 CrossRefGoogle Scholar
  44. Singh P, Nedumaran S, Traore PCS, Boote KJ, Rattunde HFW, Vara Prasad PV, Singh NP, Srinivas K, Bantilan MCS (2014) Quantifying potential benefits of drought and heat tolerance in rainy season sorghum for adapting to climate change. Agric For Meteorol 185:37–48. doi: 10.1016/j.agrformet.2013.10.012 CrossRefGoogle Scholar
  45. Suh JP, Jeung JU, Lee JI, Choi YH, Yea JD, Virk PS, Mackill DJ, Jena KK (2010) Identification and analysis of QTLs controlling cold tolerance at the reproductive stage and validation of effective QTLs in cold-tolerant genotypes of rice (Oryza sativa L.). Theor Appl Genet 120:985–995. doi: 10.1007/s00122-009-1226-8 CrossRefGoogle Scholar
  46. Tardieu F (2003) Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends Plant Sci 8:9–14. doi: 10.1016/S1360-1385(02)00008-0 CrossRefGoogle Scholar
  47. Tardieu F (2010) Why work and discuss the basic principles of plant modelling 50 years after the first crop models? J Exp Bot 61:2039–2041. doi: 10.1093/jxb/erq135 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • L. Paleari
    • 1
  • G. Cappelli
    • 1
  • S. Bregaglio
    • 1
  • M. Acutis
    • 1
  • M. Donatelli
    • 2
  • G. A. Sacchi
    • 3
  • E. Lupotto
    • 4
  • M. Boschetti
    • 5
  • G. Manfron
    • 3
    • 5
  • R. Confalonieri
    • 1
  1. 1.Università degli Studi di Milano, Department of Agricultural and Environmental Sciences, Cassandra LabMilanItaly
  2. 2.Consiglio per la Ricerca in agricoltura e l’analisi dell’Economia Agraria, Centro di ricerca per le colture industrialiBolognaItaly
  3. 3.Università degli Studi di Milano, Department of Agricultural and Environmental SciencesMilanItaly
  4. 4.Consiglio per la Ricerca in agricoltura e l’analisi dell’Economia Agraria, Dipartimento di Biologia e produzione vegetaleRomaItaly
  5. 5.National Research Council, IREAMilanItaly

Personalised recommendations