Climatic Change

, Volume 131, Issue 4, pp 621–633 | Cite as

Impact of climate change on the distribution of a giant land snail from South America: predicting future trends for setting conservation priorities on native malacofauna

  • Ariel A. Beltramino
  • Roberto E. Vogler
  • Diego E. Gutiérrez Gregoric
  • Alejandra Rumi
Article

Abstract

Many land snails are vulnerable to climate change as a consequence of small distribution ranges and poor dispersal. South America is a diverse region in terms of land snail fauna, but studies about the impacts of climate change on molluscan biodiversity are virtually nonexistent. Bioclimatic models provide an important tool to assess how habitat suitability may change in a warming planet. In this study, we examine potential impacts of climate change on a giant land snail (Megalobulimus sanctipauli) from the Atlantic Forest to predict future shifts in its potential distribution, and to identify protected areas that may contain suitable habitat for setting conservation priorities. Using a maximum entropy algorithm, we modeled the species’ potential distribution across South America under current climatic conditions and projected the results onto two climate change scenarios for two time frames. A 2.17 % of South America on the Atlantic Forest was predicted to be currently suitable for the species, comprising the border area among Argentina, Brazil and Paraguay. Prognosis of future distribution showed a trend to a northern retraction, but a southern expansion of current potential range. More than 150 protected areas were identified to contain climatically suitable habitat for the species, but on the less optimistic outlook only ~1545 km2 of protected areas (0.009 % of South America) would remain suitable for the species by the end of the century. Our findings are expected to improve understanding of climate change impacts on native giant land snails and to contribute in conservation efforts on this malacofauna.

Supplementary material

10584_2015_1405_MOESM1_ESM.docx (42 kb)
ESM 1(DOCX 41 kb)

References

  1. Agudo-Padrón AI (2011) Threatened freshwater and terrestrial molluscs (Mollusca, Gastropoda: Bivalvia) of Santa Catarina State, Southern Brazil: check list and evaluation of regional threats. Biodivers J 2(2):59–66Google Scholar
  2. Barker GM (2001) The biology of terrestrial molluscs. CABI, WallingfordCrossRefGoogle Scholar
  3. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377CrossRefGoogle Scholar
  4. Beltramino AA (2013) Distribution of Megalobulimus sanctipauli (Ihering and Pilsbry, 1900) (Gastropoda: Megalobulimidae) in South America. Check List 9(2):469–471CrossRefGoogle Scholar
  5. Beltramino AA, Vogler RE, Rumi A (2012) Megalobulimus sanctipauli (Ihering y Pilsbry, 1900): antecedentes de la especie. Amici Molluscarum 20(2):19–24Google Scholar
  6. Bequaert JC (1948) Monograph of the Strophocheilidae, a neotropical family of terrestrial mollusks. Bull Mus Comp Zool 100(1):1–210Google Scholar
  7. Bonard AR, Caldini CH, Miquel SE (2012) Mirinaba fusoides (Bequaert, 1948) (Mollusca, Strophocheilidae): primer registro de la especie en la República Argentina. Hist Nat (B Aires) 2(2):95–100Google Scholar
  8. Breure ASH, Romero PE (2012) Support and surprises: molecular phylogeny of the land snail superfamily Orthalicoidea using a three-locus gene analysis with a divergence time analysis and ancestral area reconstruction. Arch Molluskenkunde 141:1–20CrossRefGoogle Scholar
  9. Cordellier M, Pfenninger A, Streit B, Pfenninger M (2012) Assessing the effects of climate change on the distribution of pulmonate freshwater snail biodiversity. Mar Biol 159:2519–2531CrossRefGoogle Scholar
  10. Di Bitetti MS, Placci G, Dietz LA (2003) Visión de biodiversidad de la ecorregión del Bosque Atlántico del Alto Paraná. World Wildlife Fund, Washington D.CGoogle Scholar
  11. Eggers S, Parks M, Grupe G, Reinhard KJ (2011) Paleoamerican diet, migration and morphology in Brazil: archaeological complexity of the earliest Americans. PLoS ONE 6(9), e23962. doi:10.1371/journal.pone.0023962 CrossRefGoogle Scholar
  12. Escalante T, Rodríguez-Tapia G, Linaje M, Illoldi-Rangel P, González-López R (2013) Identification of areas of endemism from species distribution models: threshold selection and Nearctic mammals. TIP Rev Esp Cienc Quím Biol 16:5–17Google Scholar
  13. ESRI (2008) ArcGIS v.9.3. ESRI, Redlands, California, USAGoogle Scholar
  14. Fernández D (1973) Catálogo de la malacofauna terrestre argentina. Comisión de Investigaciones Científicas de la Provincia de Buenos. Aires, La PlataGoogle Scholar
  15. Fernández D (1978) Nota sobre Strophocheilus sinistrales (Moll. Gastr.). Neotropica 24(72):149–150Google Scholar
  16. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  17. Fischer ML, Costa LCM (2010) O caramujo Gigante Africano Achatina fulica no Brasil. Champagnat, CuritibaGoogle Scholar
  18. Foden W, Mace G, Vié JC, Angulo A, Butchart S, DeVantier L, Dublin H, Gutsche A, Stuart S, Turak E (2008) Species susceptibility to climate change impacts. In: Vié JC, Hilton-Taylor C, Stuart SN (eds) The 2008 review of the IUCN red list of threatened species. IUCN Gland, Switzerland, pp 1–11Google Scholar
  19. Franklin J, Davis FW, Ikegami M, Syphard AD, Flint LE, Flint AL, Hannah L (2013) Modeling plant species distributions under future climates: how fine scale do climate projections need to be? Glob Chang Biol 19(2):473–483CrossRefGoogle Scholar
  20. Giovanelli JGR, Haddad CFB, Alexandrino J (2008) Predicting the potential distribution of the alien invasive American bullfrog (Lithobates catesbeianus) in Brazil. Biol Invasions 10:585–590CrossRefGoogle Scholar
  21. Graham CH, Loiselle BA, Velásquez-Tibatá J, Cuesta F (2011) Species distribution modeling and the challenge of predicting future distributions. In: Herzog SK, Martinez R, Jørgensen PM, Tiessen H (eds) Climate change and biodiversity in the Tropical Andes. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), São José dos Campos and Paris, pp 295–310Google Scholar
  22. Gutiérrez Gregoric DE, Núñez V, Vogler RE, Beltramino AA, Rumi A (2013) Gasterópodos terrestres de la provincia de Misiones, Argentina. Rev Biol Trop 61:1759–1768Google Scholar
  23. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  24. Hylton Scott MI (1939) Estudio anatómico del Borus “Strophocheilus lorentzianus” (Doer.) (Mol. Pulm.). Revista Mus La Plata 1(Zool): 217–278Google Scholar
  25. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  26. IUCN (2014) IUCN Red List of Threatened Species. Version 2014.3. http://www.iucnredlist.org. Accessed 18 Dec 2014
  27. Jaramillo Roldán E, López Martínez J, Ramírez R, Velásquez Trujillo LE (2014) Análisis morfológico del sistema reproductor e identificación molecular a través de los marcadores mitocondriales COI y 16S rRNA de Megalobulimus oblongus (Mollusca, Strophocheilidae) de Colombia. Rev Per Biol 21:79–88Google Scholar
  28. Jeschke JM, Strayer DL (2008) Usefulness of bioclimatic models for studying climate change and invasive species. Ann N Y Acad Sci 1134:1–24CrossRefGoogle Scholar
  29. Johnson DM, Büntgen U, Frank DC, Kausrud K, Haynes KJ, Liebhold AM, Esper J, Stenseth NC (2010) Climatic warming disrupts recurrent Alpine insect outbreaks. Proc Natl Acad Sci U S A 107:20576–20581CrossRefGoogle Scholar
  30. Kramarenko CC (2014) Active and passive dispersal of terrestrial mollusks: a review. Ruthenica 24(1):1–14Google Scholar
  31. Kumar S, Stohlgren TJ (2009) Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J Ecol Nat Environ 1(4):94–98Google Scholar
  32. Loo SE, Mac Nally R, Lake PS (2007) Forecasting New Zealand mudsnail invasion range: model comparisons using native and invaded ranges. Ecol Appl 17:181–189CrossRefGoogle Scholar
  33. Lydeard C, Cowie RH, Ponder WF, Bogan AE, Bouchet P, Clark SA, Cummings KS, Frest TJ, Gargominy O, Herbert DG, Hershler R, Perez KE, Roth B, Seddon M, Strong EE, Thompson FG (2004) The global decline of nonmarine mollusks. Bioscience 54:321–330CrossRefGoogle Scholar
  34. Marengo JA (2006) Mudanças climáticas globais e seus efeitos sobre a biodiversidade: caracterização do clima atual e definição das alterações climáticas para o território brasileiro ao longo do século XXI, 2nd edn. Ministério do Meio Ambiente, BrasíliaGoogle Scholar
  35. Miranda MS, Fontenelle JH, Pecora IL (2015) Population structure of a native and an alien species of snail in an urban area of the Atlantic Rainforest. J Nat Hist 49:19–35CrossRefGoogle Scholar
  36. Morueta-Holme N, Fløjgaard C, Svenning JC (2010) Climate change risks and conservation implications for a threatened small-range mammal species. PLoS ONE 5(4), e10360. doi:10.1371/journal.pone.0010360 CrossRefGoogle Scholar
  37. Paredes-García DM, Ramírez-Bautista A, Martínez-Morales MA (2011) Distribución y representatividad de las especies del género Crotalus en las áreas naturales protegidas de México. Rev Mex Biodivers 82:689–700Google Scholar
  38. Parodiz JJ (1957) Catalogue of the land Mollusca of Argentina. Nautilus 70:127–135Google Scholar
  39. Paviolo A, De Angelo CD, Di Blanco YE, Di Bitetti MS (2008) Jaguar Panthera onca population decline in the Upper Paraná Atlantic Forest of Argentina and Brazil. Oryx 42:554–561Google Scholar
  40. Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117CrossRefGoogle Scholar
  41. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175CrossRefGoogle Scholar
  42. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  43. Quintana MG (1982) Catálogo preliminar de la malacofauna del Paraguay. Rev Mus Argent Cienc Nat 11(3):61–158Google Scholar
  44. Ramírez R, Paredes C, Arenas J (2003) Moluscos del Perú. Rev Biol Trop 51(Suppl 3):225–284Google Scholar
  45. Régnier C, Fontaine B, Bouchet P (2009) Not knowing, not recording, not listing: numerous unnoticed mollusk extinctions. Conserv Biol 23:1214–1221CrossRefGoogle Scholar
  46. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic forest: how much is left and how is the remaining forest distributed? Implications for conservation. Biol Constr 142:1141–1153CrossRefGoogle Scholar
  47. Salgado NC, Coelho ACS (2003) Moluscos terrestres do Brasil (Gastrópodes operculados ou não, exclusive Veronicellidae, Milacidae e Limacidae). Rev Biol Trop 51(Suppl 3):149–189Google Scholar
  48. Santos SB (2011) Land snails as flagship and umbrella species for Brasilian Atlantic Forest conservation. Tentacle 19:19–20Google Scholar
  49. Santos SB, Miyahira IC, Mansur MCD (2013) Freshwater and terrestrial molluscs in Brasil: current status of knowledge and conservation. Tentacle 21:40–42Google Scholar
  50. Sen S, Ravikanth G, Aravind NA (2012) Land snails (Mollusca: Gastropoda) of India: status, threats and conservation strategies. J Threat Taxa 4(11):3029–3037CrossRefGoogle Scholar
  51. Simone LRL (2006) Land and freshwater molluscs of Brazil. Editorial EGB-Fapesp, São PauloGoogle Scholar
  52. Souza TVD, Lorini ML, Alves MAS, Cordeiro P, Vale MM (2011) Redistribution of threatened and endemic Atlantic Forest birds under climate change. Nat Conserv 9(2):214–218CrossRefGoogle Scholar
  53. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Ferreira de Siqueira M, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend Peterson A, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148CrossRefGoogle Scholar
  54. Thorn JS, Nijman V, Smith D, Nekaris KAI (2009) Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Divers Distrib 15:289–298CrossRefGoogle Scholar
  55. UNEP-WCMC (2012) Data standards for the world database on protected areas. UNEP-WCMC, CambridgeGoogle Scholar
  56. Vale MM, Alves MAS, Lorini ML (2009) Mudanças climáticas: desafios e oportunidades para a conservação da biodiversidade brasileira. Oecol Bras 13:518–535CrossRefGoogle Scholar
  57. Vogler RE, Beltramino AA, Sede MM, Gutiérrez Gregoric DE, Núñez V, Rumi A (2013) The giant African snail, Achatina fulica (Gastropoda: Achatinidae): using bioclimatic models to identify South American areas susceptible to invasion. Am Malac Bull 31:39–50CrossRefGoogle Scholar
  58. Wieczorek J, Guo Q, Hijmans RJ (2004) The point-radius method for georeferencing locality descriptions and calculating associated uncertainty. Int J Geogr Inf Sci 18(8):745–767CrossRefGoogle Scholar
  59. Xu Z, Feng Z, Yang J, Zheng J, Zhang F (2013) Nowhere to invade: Rumex crispus and Typha latifolia projected to disappear under future climate scenarios. PLoS ONE 8(7), e70728. doi:10.1371/journal.pone.0070728 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Ariel A. Beltramino
    • 1
    • 2
  • Roberto E. Vogler
    • 2
    • 3
  • Diego E. Gutiérrez Gregoric
    • 1
    • 2
  • Alejandra Rumi
    • 1
    • 2
  1. 1.División Zoología Invertebrados, Facultad de Ciencias Naturales y MuseoUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Departamento de Biología, Facultad de Ciencias Exactas, Químicas y NaturalesUniversidad Nacional de MisionesPosadasArgentina

Personalised recommendations