Advertisement

Climatic Change

, Volume 131, Issue 2, pp 245–257 | Cite as

Insect herbivore damage on latitudinally translocated silver birch (Betula pendula) – predicting the effects of climate change

  • Kaisa HeimonenEmail author
  • Anu Valtonen
  • Sari Kontunen-Soppela
  • Sarita Keski-Saari
  • Matti Rousi
  • Elina Oksanen
  • Heikki Roininen
Article

Abstract

Boreal forests might be challenged by increased herbivory pressure in the future due to global warming, since warming is predicted to increase the abundance of herbivorous insects and to lead to shifts in their distribution towards higher latitudes where they might face more palatable food sources. We studied the effect of the latitudinal translocation of silver birch (Betula pendula Roth) on herbivore damage to 26 micropropagated genotypes originating from six populations ranging from 60 to 67°N in Finland in two growing seasons, 2011 and 2012. The genotypes were planted at three sites located in southern (60°N), central (62°N) and northern (67°N) Finland. The genotypes translocated to lower latitudes from their latitudes of origin were experiencing higher intensity of herbivore damage compared to the genotypes translocated to higher latitudes in 2011, but not in 2012. All genotypes were experiencing herbivore damage by local herbivores of each study site. These results suggest that, as many herbivore species are predicted to shift their ranges towards higher latitudes, they can feed on novel host plant genotypes and may face more palatable food sources than at their present range. This suggests that future climate change will increase herbivore damage to young silver birch. Increased herbivory, in turn, might affect the growth of birch and therefore should be considered when making predictions about the boreal forest composition in the future.

Keywords

Boreal Forest Herbivore Damage Silver Birch Betula Pendula Herbivore Community 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank the staff of Natural Resources Institute Finland, Luke (the former Finnish Forest Research Institute, METLA) in Haapastensyrjä and H. Hakulinen in UEF for micropropagation and producing the plantlets, M. Pekkonen, K. Ranta, I. Heikkilä and other staff of Luke in Tuusula and Kolari who took care of the experiment and helped in data collection, and the staff of Botania in Joensuu. We also thank field assistants P. Junes, E. Issakainen, S. Hakkarainen and A. Pajula. We appreciate the anonymous reviewers and M. Kozlov for their comments that helped us to improve the manuscript. We acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu). Research was supported by the strategic funding of the University of Eastern Finland, project 931060.

Supplementary material

10584_2015_1392_MOESM1_ESM.pdf (209 kb)
Online resource 1 (PDF 208 kb)
10584_2015_1392_MOESM2_ESM.pdf (145 kb)
Online resource 2 (PDF 145 kb)
10584_2015_1392_MOESM3_ESM.pdf (257 kb)
Online resource 3 (PDF 257 kb)
10584_2015_1392_MOESM4_ESM.pdf (146 kb)
Online resource 4 (PDF 146 kb)
10584_2015_1392_MOESM5_ESM.pdf (140 kb)
Online resource 5 (PDF 139 kb)
10584_2015_1392_MOESM6_ESM.pdf (138 kb)
Online resource 6 (PDF 137 kb)

References

  1. Abdala-Roberts L, Marquis RJ (2007) Test of local adaptation to biotic interactions and soil abiotic conditions in the ant-tended Chamaecrista fasciculata (Fabaceae). Oecologia 154:315–326. doi: 10.1007/s00442-007-0831-y CrossRefGoogle Scholar
  2. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. Primer-E, PlymouthGoogle Scholar
  3. Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8:1–16. doi: 10.1046/j.1365-2486.2002.00451.x CrossRefGoogle Scholar
  4. Barton KE, Koricheva J (2010) The ontogeny of plant defense and herbivory: characterizing general patterns using meta-analysis. Am Nat 175:481–493. doi: 10.1086/650722 CrossRefGoogle Scholar
  5. Barton KE, Valkama E, Vehviläinen H, Ruohomäki K, Knight TM, Koricheva J (2014) Additive and non-additive effects if birch genotypic diversity on arthropod herbivory in a long-term field experiment. Oikos. doi: 10.1111/oik.01663 Google Scholar
  6. Battisti A, Stastny M, Netherer S (2005) Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol Appl 15:2084–2096. doi: 10.1890/04-1903 CrossRefGoogle Scholar
  7. Brus DJ, Hengeveld GM, Walvoort DJJ, Goedhart PW, Heidema AH, Nabuurs GJ, Gunia K (2012) Statistical mapping of tree species over Europe. Eur J For Res 131:145–157. doi: 10.1007/s10342-011-0513-5 CrossRefGoogle Scholar
  8. Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  9. Currano ED, Wilf P, Wing SL, Labandeira CC, Lovelock EC, Royer DL (2008) Sharply increased insect herbivory during the Paleocene-Eocene Thermal Maximum. Proc Natl Acad Sci U S A 105:1960–1964. doi: 10.1073/pnas.0708646105 CrossRefGoogle Scholar
  10. Edmunds GF, Alstad DN (1978) Coevolution in insect herbivores and conifers. Science 199:941–945CrossRefGoogle Scholar
  11. Finnish Meteorological Institute (2014a) Terminen kasvukausi. http://ilmatieteenlaitos.fi/terminen-kasvukausi. Accessed 15 June 2014
  12. Finnish Meteorological Institute (2014b) Vuositilastot. http://ilmatieteenlaitos.fi/vuositilastot. Accessed 20 November 2014
  13. Finnish Meteorological Institute (2014c) Vuoden 2011 säät. http://ilmatieteenlaitos.fi/vuosi-2011. Accessed 15 June 2014
  14. Finnish Meteorological Institute (2014d) Vuoden 2012 säät. http://ilmatieteenlaitos.fi/vuosi-2012. Accessed 15 June 2014
  15. Garibaldi LA, Kitzberger T, Ruggiero A (2010) Latitudinal decrease in folivory within Nothofagus pumilio forests: dual effect of climate on insect density and leaf traits? Glob Ecol Biogeogr 20:609–619. doi: 10.1111/j.1466-8238.2010.00623.x CrossRefGoogle Scholar
  16. Garibaldi LA, Kitzberger T, Chaneton EJ (2011) Environmental and genetic control of insect abundance and herbivory along a forest elevational gradient. Oecologia 167:117–129. doi: 10.1007/s00442-011-1978-0 CrossRefGoogle Scholar
  17. Hanhimäki S (1989) Induced resistance in mountain birch: defence against leaf-chewing insect guild and herbivore competition. Oecologia 81:242–248CrossRefGoogle Scholar
  18. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119. doi: 10.1029/2008JD010201 CrossRefGoogle Scholar
  19. Heimonen K, Valtonen A, Kontunen-Soppela S, Keski-Saari S, Rousi M, Oksanen E, Roininen H (2014) Colonization of a host tree by herbivorous insects under a changing climate. Oikos. doi: 10.1111/oik.01986 Google Scholar
  20. Ho C-K, Pennings SC (2013) Preference and performance in plant-herbivore interactions across latitude – A case study in U.S. Atlantic salt marshes. PLoS One 8:e59829. doi: 10.1371/journal.pone.0059829 CrossRefGoogle Scholar
  21. Jepsen JU, Hagen SB, Ims RA, Yoccoz NG (2008) Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest : evidence of a recent outbreak range expansion. J Anim Ecol 77:257–264. doi: 10.1111/j.1365-2656.2007.0 CrossRefGoogle Scholar
  22. Kellomäki S, Peltola H, Nuutinen T, Korhonen KT, Strandman H (2008) Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management. Philos Trans R Soc B 363:2341–2351. doi: 10.1098/rstb.2007.2204 CrossRefGoogle Scholar
  23. Kozlov MV (2008) Losses of birch foliage due to insect herbivory along geographical gradients in Europe: a climate-driven pattern? Clim Change 87:107–117. doi: 10.1007/s10584-007-9348-y CrossRefGoogle Scholar
  24. Kozlov MV, van Nieukerken EJ, Zverev V, Zvereva EL (2013) Abundance and diversity of birch-feeding leafminers along latitudinal gradients in northern Europe. Ecography 36:1138–1149. doi: 10.1111/j.1600-0587.2013.00272.x CrossRefGoogle Scholar
  25. Maddox GD, Root RB (1990) Structure of the encounter between goldenrod (Solidago altissima) and its diverse insect fauna. Ecology 71:2115–2124CrossRefGoogle Scholar
  26. Moles AT, Bonser SP, Poore AGB, Wallis IR, Foley WJ (2011) Assessing the evidence for latitudinal gradients in plant defence and herbivory. Funct Ecol 25:380–388. doi: 10.1111/j.1365-2435.2010.01814.x CrossRefGoogle Scholar
  27. Mopper S, Simberloff D (1995) Differential herbivory in an oak population: the role of plant phenology and insect performance. Ecology 76:1233–1241CrossRefGoogle Scholar
  28. Morrison WE, Hay ME (2012) Are lower-latitude plants better defended? Palatability of freshwater macrophytes. Ecology 93:65–74. doi: 10.1890/11-0725.1 CrossRefGoogle Scholar
  29. Nooten SS, Andrew NR, Hughes L (2014) Potential impacts of climate change on insect communities: a transplant experiment. PLoS One 9:e85987. doi: 10.1371/journal.pone.0085987 CrossRefGoogle Scholar
  30. Ortegón-Campos I, Parra-Tabla V, Abdala-Roberts L, Herrera CM (2009) Local adaptation of Ruellia nudiflora (Acanthaceae) to biotic counterparts: complex scenarios revealed when two herbivore guilds are considered. J Evol Biol 22:2288–2297. doi: 10.1111/j.1420-9101.2009.01847.x CrossRefGoogle Scholar
  31. Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Kullberg J, Tammaru T, Tennent WJ, Thomas JA, Warren M (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583CrossRefGoogle Scholar
  32. Pennings SC, Siska EL, Bertness MD (2001) Latitudinal differences in plant palatability in Atlantic coast salt marshes. Ecology 82:1344–1359CrossRefGoogle Scholar
  33. Pinheiro JC, Bates DM (2000) Mixed effect models in S and S-Plus, 1st edn. Springer, New YorkCrossRefGoogle Scholar
  34. Prittinen K, Pusenius J, Koivunoro K, Rousi M, Roininen H (2003) Mortality in seedling populations of silver birch: genotypic variation and herbivore effects. Funct Ecol 17:658–663CrossRefGoogle Scholar
  35. Roy DB, Rothery P, Moss D, Pollard E, Thomas JA (2001) Butterfly numbers and weather : predicting historical trends in abundance and the future effects of climate change. J Anim Ecol 70:201–217. doi: 10.1111/j.1365-2656.2001.00480.x CrossRefGoogle Scholar
  36. Ruosteenoja K, Räisänen J, Pirinen P (2011) Projected changes in thermal seasons and the growing season in Finland. Int J Climatol 31:1473–1487CrossRefGoogle Scholar
  37. Schaffer B, Peña JE, Colls AM, Hunsberger A (1997) Citrus leafminer (Lepidoptera: Gracillariidae) in lime: Assessment of leaf damage and effects on photosynthesis. Crop Prot 16:337–343. doi: 10.1016/S0261-2194(97)00003-3 CrossRefGoogle Scholar
  38. Siemann E, Rogers W (2003) Herbivory, disease, recruitment limitation, and success of alien and native tree species. Ecology 84:1489–1505. doi: 10.1890/0012-9658(2003)084[1489:HDRLAS]2.0.CO;2 CrossRefGoogle Scholar
  39. Silfver T, Roininen H, Oksanen E, Rousi M (2009) Genetic and environmental determinants of silver birch growth and herbivore resistance. For Ecol Manage 257:2145–2149. doi: 10.1016/j.foreco.2009.02.020 CrossRefGoogle Scholar
  40. Sork VL, Stowe KA, Hochwender C (1993) Evidence for local adaptation in closely adjacent subpopulations of northern red oak (Quercus rubra L.) expressed as resistance to leaf herbivores. Am Nat 142:928–936CrossRefGoogle Scholar
  41. Van Zandt PA, Mopper S (1998) A meta-analysis of adaptive deme formation in phytophagous insect populations. Am Nat 152:595–604. doi: 10.1086/286192 CrossRefGoogle Scholar
  42. Virtanen T, Neuvonen S (1999) Climate change and macrolepidopteran biodiversity in Finland. Chemosphere Global Change Sci 1:439–448CrossRefGoogle Scholar
  43. Virtanen T, Neuvonen S, Nikula A (1998) Modelling topoclimatic patterns of egg mortality of Epirrita autumnata (Lepidoptera: Geometridae) with a Geographical Information System: predictions for current climate and warmer climate scenarios. J Appl Ecol 35:311–322CrossRefGoogle Scholar
  44. Wolf A, Kozlov MV, Callaghan TV (2008) Impact of non-outbreak insect damage on vegetation in northern Europe will be greater than expected during a changing climate. Clim Change 87:91–106. doi: 10.1007/s10584-007-9340-6 CrossRefGoogle Scholar
  45. Zvereva EL, Zverev V, Kozlov MV (2012) Little strokes fell great oaks: minor but chronic herbivory substantially reduces birch growth. Oikos 121:2036–2043. doi: 10.1111/j.1600-0706.2012.20688.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Kaisa Heimonen
    • 1
    Email author
  • Anu Valtonen
    • 1
  • Sari Kontunen-Soppela
    • 1
  • Sarita Keski-Saari
    • 1
  • Matti Rousi
    • 2
  • Elina Oksanen
    • 1
  • Heikki Roininen
    • 1
  1. 1.Department of BiologyUniversity of Eastern FinlandJoensuuFinland
  2. 2.Natural Resources Institute Finland, Vantaa Research UnitVantaaFinland

Personalised recommendations