Climatic Change

, Volume 132, Issue 2, pp 223–235 | Cite as

An integrated assessment of water-energy and climate change in sacramento, california: how strong is the nexus?

  • Larry L. Dale
  • Nihan Karali
  • Dev Millstein
  • Mike Carnall
  • Sebastian Vicuña
  • Nicolas Borchers
  • Eduardo Bustos
  • Joe O’Hagan
  • David Purkey
  • Charles Heaps
  • Jack Sieber
  • William D. Collins
  • Michael D. Sohn
Article

Abstract

This paper is among the first to report on the full integration of basin-scale models that include projections of the demand and supply of water and energy for residential, commercial, industrial, and agricultural sector users. We link two widely used regional planning models that allow one to study the impact of rising climate variability on water and electricity use in Sacramento, California. Historic data combined with the current energy and water system configuration was used to assess the implications of changes in temperature and precipitation. Climate simulations suggest that electricity imports to the region would increase during hot dry spells, when regional power production is most constrained. In particular, regional imports of electricity would increase over 35 % in hot dry years, assuming a 4 °C increase in average temperature and a 25 % decrease in average precipitation.

Supplementary material

10584_2015_1370_MOESM1_ESM.xlsx (19 kb)
ESM 1(XLSX 18 kb)

References

  1. Alawaji S, Smiai MS, Rafique S (1995) PV-powered water pumping and desalination plant for remote areas in Saudi Arabia. Appl Energy 52(2–3):283–289CrossRefGoogle Scholar
  2. Alcamo J (2003) WaterGAP: development and application of a global model for water withdrawals and availability. Hydrol Sci J 48(3):317–37CrossRefGoogle Scholar
  3. Bazillian M, Rogner H, Howells M, Hermann S, Arent D, Gielen D, Steduto P, Mueller A, Komor P, Tol RSJ, Yumkella KK (2011) Considering the energy, water and food nexus: towards an integrated modelling approach. Energy Policy 39(12):7896–7906CrossRefGoogle Scholar
  4. Campana PE, Li H, Yan J (2013) Dynamic modelling of a PV pumping system with special consideration on water demand. Appl Energy 112:635–645CrossRefGoogle Scholar
  5. Cayan D (2014) Preliminary selection of GCMs for the representative climate scenarios for CA. Scripps Institution of Oceanography. Pers CommunGoogle Scholar
  6. Dale L, Dogrul E, Brush C, Kadir K, Chung F, Miller M, Vicunia S (2013) Simulating the impact of drought on central valley hydrology, groundwater and cropping. Br J Environ Clim Chang 3(3):271–291CrossRefGoogle Scholar
  7. De Fraiture C (2007) Integrated water and food analysis at the global and basin level. An application of WATERSIM. Water Resour Manag 21:185–98CrossRefGoogle Scholar
  8. Dubreuil A, Assoumou E, Bouckaert S, Selosse S, Maizi N (2013) Water modeling in an energy optimization framework—the water-scarce middle east context. Appl Energy 101:268–279CrossRefGoogle Scholar
  9. Hermann S, Welsch M, Ericsdotter, Segerström R, Howells, MI, Young C, Alfstad T, Rogner H-H, Steduto P (2012) Climate, land, energy and water (CLEW) interlinkages in Burkina Faso: an analysis of agricultural intensification and bioenergy production. Nat Res Forum 36(4)Google Scholar
  10. Howells M, Rogner H-H, Strachan N, Heap C, Huntington H, Kypreos S, Hughes A, Silveira S, DeCarolish J, Bazillian M, Roehrl A (2011) OSeMOSYS: the open source energy modeling system: an introduction to its ethos, structure and development. Energy Policy 39(10):5850–5870.2CrossRefGoogle Scholar
  11. Howells M, Hermann S, Welsch M, Bazilian M, Segerström R, Alfstad T, Gielen D, Rogner H-H, Fischer G, van Velthuizen H, Wiberg D, Young C, Roehrl RA, Mueller A, Steduto P, Ramma I (2013) Integrated analysis of climate change, land-use, energy and water strategies. Nat Clim Chang 3:621–626CrossRefGoogle Scholar
  12. Karali N (2012) Design and development of a large scale energy model. Ph.D. Thesis. Bogazici University. Istanbul, Turkey; 2012Google Scholar
  13. Koch H, Vögele S (2013) Hydro-climatic conditions and thermoelectric electricity generation-Part I: development of models. Energy 63:42–51Google Scholar
  14. Labadie JW, Baldo ML, Larson R (200) MODSIM: decision support system for river basin management: documentation and user manual. Department of Civil Engineering. Colorado State UniversityGoogle Scholar
  15. Loulou R, Goldstein G, Noble K (2004) Documentation for the MARKAL family of models. IEAETSAP; 2004Google Scholar
  16. Loulou R, Remne U, Kanudia A, Lehtila A, Goldstein G (2005) Documentation for the TIMES model part i. Energy Technology Systems Analysis Programme, ParisGoogle Scholar
  17. Madani K, Lund, JR (2010) Estimated impacts of climate warming on California’s high elevation hydropower. Climatic Change 102(3-4):521–538Google Scholar
  18. Ould-Amrouchea S, Rekioua D, Hamidat A (2010) Modelling photovoltaic water pumping systems and evaluation of their CO2 emissions mitigation potential. Appl Energy 87(11):3451–3459CrossRefGoogle Scholar
  19. Pierce DW, Das T, Cayan DR, Maurer EP, Miller NL, Bao Y, Kanamitsu M, Yoshimura K, Snyder MA, Sloan LC, Franco G, Tyree M (2012) Probabilistic estimates of future changes in California temperature and precipitation using statistical and dynamical downscaling. Climate Dynam 40:839–856CrossRefGoogle Scholar
  20. Sacramento Municipal Utility District (SMUD) (2013) Private data from SMUD for Sacramento region weekly and monthly electricity demand and generation in 2010. 2012. Sacramento Regional Water Authority (RWA). Private data from RWA for Sacramento region weekly water demand in 2010Google Scholar
  21. Sattler S, Macknick D, Yates D, Flores-Lopez F, Lopez A, Rogers J (2012) Linking electricity and water models to assess electricity choices at water-relevant scales. Environ Res Lett 7(4):045804CrossRefGoogle Scholar
  22. Schrattenholzer L (1981) The energy supply model MESSAGE. International Institute for Applied Systems Analysis, LaxenburgGoogle Scholar
  23. Stillwell AS, Clayton ME, Webber ME (2011) Technical analysis of a river basin-based model of advanced power plant cooling technologies for mitigating water management challenges. Environ Res Lett 6(3):034015CrossRefGoogle Scholar
  24. Stockholm Environment Institute (SEI). Long-range energy alternatives planning (LEAP) system user guide for version 2011. <http://www.energycommunity.org/documents/LEAP2011UserGuideEnglish.pdf> [last accessed October 2014]
  25. Van der Voort E, Donnie E, Thonet C, Bois d’Enghien E, Dechamps C, Guilmot J (1984) Energy supply modeling package EFOM-12C Mark 1 mathematical description. Commission of the European Comminities, Louvain-a-NeuveGoogle Scholar
  26. van Vliet MTH, Vögele S, Rübbelke D (2013) Water constraints on European power supply under climate change: impacts on electricity prices. Environ Res Lett 8:035010CrossRefGoogle Scholar
  27. Vicuna S, Dale L, Dracup J (2011) Climate change impacts on the operation of two high elevation hydropower systems in California. Clim Change. doi:10.1007/s10584-011-0301-8 Google Scholar
  28. Welsch M, Hermann S, Howells M, Rogner HH, Young C, Rammad I, Bazilian M, Fischer G, Alfstad T, Gielen D, Le Blanch D, Röhrl A, Steduto P, Müller A (2014) Adding value with CLEWSModelling the energy system and its interdependencies for Mauritius. Appl Energy 113:1434–1445CrossRefGoogle Scholar
  29. Yates D, Sieber J, Purkey D, Huber-Lee A (2005a) WEAP21: a demand, priority, and preferencedriven water planning model. Water Int 30(4):487–500CrossRefGoogle Scholar
  30. Yates D, Purkey D, Sieber J, Huber-Lee A, Galbraith H (2005b) WEAP21: a demand, priority, and preference-driven water planning model: part 2, aiding freshwater ecosystem service evaluation. Water Int 30(4):501–512CrossRefGoogle Scholar
  31. Yates D, Purkey D, Sieber J, Vasquez Lavin F, Guerrero S, Hanemann M (2013) Using economic and other performance measures to evaluate a municipal drought plan. Water Policy 15(4):648–668CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Larry L. Dale
    • 1
  • Nihan Karali
    • 1
  • Dev Millstein
    • 1
  • Mike Carnall
    • 1
  • Sebastian Vicuña
    • 2
  • Nicolas Borchers
    • 2
  • Eduardo Bustos
    • 2
  • Joe O’Hagan
    • 3
  • David Purkey
    • 4
    • 5
  • Charles Heaps
    • 4
    • 5
  • Jack Sieber
    • 4
    • 5
  • William D. Collins
    • 6
  • Michael D. Sohn
    • 1
  1. 1.Lawrence Berkeley National LaboratoryEnergy Technologies AreaBerkeleyUSA
  2. 2.Centro Interdisciplinario de Cambio GlobalPontificia Universidad Catolica de ChileSantiagoChile
  3. 3.California Energy CommissionSacramentoUSA
  4. 4.Stockholm Environment InstituteCambridgeUSA
  5. 5.Stockholm Environment InstituteDavisUSA
  6. 6.Lawrence Berkeley National LaboratoryEarth Science DivisionBerkeleyUSA

Personalised recommendations