Skip to main content

Advertisement

Log in

The legacy of our CO2 emissions: a clash of scientific facts, politics and ethics

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Of the carbon dioxide that we emit, a substantial fraction remains in the atmosphere for thousands of years. Combined with the slow response of the climate system, this results in the global temperature increase resulting from CO2 being nearly proportional to the total emitted amount of CO2 since preindustrial times. This has a number of simple but far-reaching consequences that raise important questions for climate change mitigation, policy and ethics. Even if anthropogenic emissions of CO2 were stopped, most of the realized climate change would persist for centuries and thus be irreversible on human timescales, yet standard economic thinking largely discounts these long-term intergenerational effects. Countries and generations to first order contribute to both past and future climate change in proportion to their total emissions. A global temperature target implies a CO2 “budget” or “quota”, a finite amount of CO2 that society is allowed to emit to stay below the target. Distributing that budget over time and between countries is an ethical challenge that our world has so far failed to address. Despite the simple relationship between CO2 emissions and temperature, the consequences for climate policy and for sharing the responsibility of reducing global CO2 emissions can only be drawn in combination with judgments about equity, fairness, the value of future generations and our attitude towards risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, Meinshausen M, Meinshausen N (2009a) Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458:1163–1166

    Article  Google Scholar 

  • Allen MR, Frame DJ, Mason CF (2009b) The case for mandatory sequestration. Nat Geosci 2:813–814

    Article  Google Scholar 

  • Baer P (2002) Equity, greenhouse gas emissions, and global common resources. In: Schneider SH, Rosencranz A, Niles JO (eds) Climate change policy: a survey. Island Press, Washington

    Google Scholar 

  • Bodansky D, Chou S, Jorge-Tresolini C (2004) International climate efforts beyond 2012: a survey of approaches. in Bodansky D (ed.) PEW Center on Global Climate Change, pp. 1–70

  • Church JA et al (2011) Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys Res Lett 38:L18601

    Google Scholar 

  • Davis S, Caldeira K, Matthews H (2010) Future CO2 emissions and climate change from existing energy infrastructure. Science 329:1330–1333

    Article  Google Scholar 

  • den Elzen M, Berk M, Schaeffer M, Olivier J, Hendriks C, Metz B (1999) The Brazilian Proposal and other options for international burden sharing: an evaluation of methodological and policy aspects using the FAIR model. Rijksinstituut voor Volksgezondheid en Milieu RIVM, DGM, NOP, pp. 1–140

  • Friedlingstein P, Solomon S, Plattner G, Knutti R, Ciais P, Raupach M (2011) Long-term climate implications of twenty-first century options for carbon dioxide emission mitigation. Nat Clim Chang 1:457–461

    Article  Google Scholar 

  • Friedlingstein P et al (2014) Persistent growth of CO2 emissions and implications for reaching climate targets. Nat Geosci 7:709–715

    Article  Google Scholar 

  • Friman M, Strandberg G (2014) Historical responsibility for climate change: science and the science-policy interface. Wiley Interdiscip Rev Clim Chang 5:297–316

    Article  Google Scholar 

  • Frölicher TL, Winton M, Sarmiento JL (2014) Continued global warming after CO2 emissions stoppage. Nat Clim Chang 4:40–44

    Article  Google Scholar 

  • Füssler J, Herren M, Guyer M, Rogelj J, Knutti R (2012) Emission pathways to reach 2°C target. Report by INFRAS and IAC ETH commissioned by the Swiss Federal Office for the Environment

  • Gillett NP, Arora VK, Zickfeld K, Marshall SJ, Merryfield AJ (2011) Ongoing climate change following a complete cessation of carbon dioxide emissions. Nat Geosci 4:83–87

    Article  Google Scholar 

  • Gillett NP, Arora VK, Matthews D, Allen MR (2013) Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. J Clim 26:6844–6858

    Article  Google Scholar 

  • Gollier C (2010) Debating about the discount rate: the basic economic ingredients. Perspekt Wirtsch 11:38–55

    Article  Google Scholar 

  • Gregory JM, Jones CD, Cadule P, Friedlingstein P (2009) Quantifying carbon cycle feedbacks. J Clim 22:5232–5250

    Article  Google Scholar 

  • Heal GM, Millner A (2014) Agreeing to disagree on climate policy. Proc Natl Acad Sci U S A 111:3695–3698

    Article  Google Scholar 

  • Huber M, Knutti R (2012) Anthropogenic and natural warming inferred from changes in Earth’s energy balance. Nat Geosci 5:31–36

    Article  Google Scholar 

  • IPCC (2013a) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2013b) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2014) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Joos F et al (2013) Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos Chem Phys 13:2793–2825

    Article  Google Scholar 

  • Knutti R, Hegerl GC (2008) The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nat Geosci 1:735–743

    Article  Google Scholar 

  • Lazarus RJ (2009) Super wicked problems and climate change: restraining the present to liberate the future. Cornell Law Rev 94:1153–1233

    Google Scholar 

  • Matthews H, Caldeira K (2008) Stabilizing climate requires near-zero emissions. Geophys Res Lett 35:L04705

    Google Scholar 

  • Matthews HD, Solomon S (2013) Irreversible does not mean unavoidable. Science 340:438–439

    Article  Google Scholar 

  • Matthews H, Gillett N, Stott P, Zickfeld K (2009) The proportionality of global warming to cumulative carbon emissions. Nature 459:829–832

    Article  Google Scholar 

  • Matthews HD, Solomon S, Pierrehumbert R (2012) Cumulative carbon as a policy framework for achieving climate stabilization. Phil Trans R Soc A 370:4365–4379

    Article  Google Scholar 

  • Matthews HD, Graham TL, Keverian S, Lamontagne C, Seto D, Smith TJ (2014) National contributions to observed global warming. Environ Res Lett 9:014010

    Article  Google Scholar 

  • Meehl GA et al (2005) How much more global warming and sea level rise? Science 307:1769–1772

    Article  Google Scholar 

  • Meinshausen M et al (2009) Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458:1158–1162

    Article  Google Scholar 

  • Meinshausen M, Raper S, Wigley T (2011a) Emulating coupled atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6-Part 1: model description and calibration. Atmos Chem Phys 11:1417–1456

    Article  Google Scholar 

  • Meinshausen M, Wigley T, Raper S (2011b) Emulating atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6-Part 2: applications. Atmos Chem Phys 11:1457–1471

    Article  Google Scholar 

  • Pahl S, Sheppard S, Boomsma C, Groves C (2014) Perceptions of time in relation to climate change. Wiley Interdiscip Rev Clim Chang 5:375–388

    Article  Google Scholar 

  • Plattner G-K et al (2008) Long-term climate commitments projected with climate-carbon cycle models. J Clim 21:2721–2751

    Article  Google Scholar 

  • Prins G et al (2010) The Hartwell paper: a new direction for climate policy after the crash of 2009. Institute for science, innovation & society, University of Oxford. LSE Mackinder Programme, London School of Economics and Political Science, London

  • Ringius L, Torvanger A, Underdal A (2002) Burden sharing and fairness principles in international climate policy. Int Environ Agree: Polit, Law Econ 2:1–22

    Article  Google Scholar 

  • Rogelj J, McCollum DL, O'Neill BC, Riahi K (2013a) 2020 emissions levels required to limit warming to below 2°C. Nat Clim Chang 3:405–412

    Article  Google Scholar 

  • Rogelj J, McCollum DL, Reisinger A, Meinshausen M, Riahi K (2013b) Probabilistic cost estimates for climate change mitigation. Nature 493:79–83

    Article  Google Scholar 

  • Rogelj J, Meinshausen M, Sedlacek J, Knutti R (2014a) Implications of potentially lower climate sensitivity on climate projections and policy. Environ Res Lett 9:031003

    Article  Google Scholar 

  • Rogelj J et al (2014b) Disentangling the effects of CO2 and short-lived climate forcer mitigation. Proc Natl Acad Sci U S A 111:16325–16330

    Article  Google Scholar 

  • Rogner H-H et al (2012) Chapter 7 - energy resources and potentials. Global energy assessment - toward a sustainable future. Cambridge University Press, Cambridge, pp 423–512

    Google Scholar 

  • Solomon S, Plattner G, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci U S A 106:1704–1709

    Article  Google Scholar 

  • Solomon S, Daniel J, Sanford T, Murphy D, Plattner G, Knutti R, Friedlingstein P (2010) Persistence of climate changes due to a range of greenhouse gases. Proc Natl Acad Sci U S A 107:18354–18359

    Article  Google Scholar 

  • Stanton EA, Ackerman F, Kartha S (2009) Inside the integrated assessment models: four issues in climate economics. Clim Dev 1:166–184

    Article  Google Scholar 

  • Sterman JD (2011) Communicating climate change risks in a skeptical world. Clim Chang 108:811–826

    Article  Google Scholar 

  • Stern N (2013) The structure of economic modeling of the potential impacts of climate change: grafting gross underestimation of risk onto already narrow science models. J Econ Lit 51:838–859

    Article  Google Scholar 

  • Tomassini L, Knutti R, Plattner GK, van Vuuren DP, Stocker TF, Howarth RB, Borsuk ME (2010) Uncertainty and risk in climate projections for the 21st century: comparing mitigation to non-intervention scenarios. Clim Chang 103:399–422

    Article  Google Scholar 

  • UNFCCC (1992) United Nations Framework Convention on Climate Change. 1–25

  • UNFCCC (2010) FCCC/CP/2010/7/Add.1 Decision 1/CP.16 - The Cancun Agreements: Outcome of the work of the Ad Hoc Working Group on Long-term Cooperative Action under the Convention. 31

  • Weitzman ML (2009) On modeling and interpreting the economics of catastrophic climate change. Rev Econ Stat 91:1–19

    Article  Google Scholar 

  • Zickfeld K, Arora VK, Gillett NP (2012) Is the climate response to CO2 emissions path dependent? Geophys Res Lett 39:L05703

    Google Scholar 

  • Zickfeld K et al (2013) Long-term climate change commitment and reversibility: an EMIC intercomparison. J Clim 26:5782–5809

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reto Knutti.

Additional information

This article is part of a Special Issue on “Climate Justice in Interdisciplinary Research” edited by Christian Huggel, Markus Ohndorf, Dominic Roser, Ivo Wallimann-Helmer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knutti, R., Rogelj, J. The legacy of our CO2 emissions: a clash of scientific facts, politics and ethics. Climatic Change 133, 361–373 (2015). https://doi.org/10.1007/s10584-015-1340-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-015-1340-3

Keywords

Navigation