Developing a reduced-form ensemble of climate change scenarios for Europe and its application to selected impact indicators

Abstract

This paper presents a method for identifying a representative subset of global climate models (GCMs) for use in large-scale climate impact research. Based on objective criteria (GCM performance in reproducing the seasonal cycle of temperature and precipitation, and a subset ability to represent future inter-GCM variability), two candidate subsets are selected from a reference set of 16 GCMs. An additional subset based on subjective expert judgement is also analysed. The representativeness of the three subsets is validated (with respect to the reference set) and compared for future changes in temperature, precipitation and Palmer drought index Z (direct validation), and occurrence of the European corn borer and snow-cover characteristics implemented in the CLIMSAVE Integrated Assessment Platform (indirect validation).

The direct validation indicates that one of the objective-based subsets (ECHAM5/MPI-OM, CSIRO-Mk3.0, HadGEM1, GFDL-CM2.1 and IPSL-CM4 models) provides the best choice for the Europe-wide climate change impact study. Its performance is balanced between regions, seasons and validation statistics. However, the expert-judgement-based subset achieved slightly better results in the indirect validation. The differences between the subsets and the reference set are generally much lower for the impact indices compared to their mean (across all GCMs in the subset) changes due to projected climate change. The ranking of the candidate subsets differs between regions, climatic characteristics and seasons, demonstrating that the subset suitability for a specific impact study depends on the target region and the roles of individual seasons and/or climatic variables on the processes being studied.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bishop CH, Abramowitz G (2012) Climate model dependence and the replicate Earth paradigm. Climate Dynam 41:885–900

    Article  Google Scholar 

  2. Dubrovsky M, Nemesova I, Kalvova J (2005) Uncertainties in climate change scenarios for the Czech Republic. Clim Res 29:139–156

    Article  Google Scholar 

  3. Dubrovsky M, Svoboda MD, Trnka M, Hayes MJ, Wilhite DA, Zalud Z, Hlavinka P (2009) Application of relative drought indices in assessing climate-change impacts on drought conditions in Czechia. Theor Appl Climatol 96:155–171

    Article  Google Scholar 

  4. Evans JP, Ji F, Lee C, Smith P, Argüeso D, Fita L (2014) Design of a regional climate modelling projection ensemble experiment – NARCliM. Geosci Model Dev 7:621–629

  5. Fronzek S, Carter TR, Jylhä K (2012) Representing two centuries of past and future climate for assessing risks to biodiversity in Europe. Glob Ecol Biogeogr 21:19–35

    Article  Google Scholar 

  6. Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113(D6):D06104. doi:10.1029/2007JD008972

    Google Scholar 

  7. Harrison PA, Holman IP, Cojocaru G, Kok K, Kontogianni A, Metzger MJ, Gramberger M (2013) Combining qualitative and quantitative understanding for exploring cross-sectoral climate change impacts, adaptation and vulnerability in Europe. Reg Environ Chang 13:761–780

    Article  Google Scholar 

  8. Harrison PA, Holman IP, Berry PM (2014) Assessing cross-sectoral climate change impacts, vulnerability and adaptation: an introduction to the CLIMSAVE project. Clim Chang (this issue)

  9. Harvey LDD, Gregory J, Hoffert M, Jain A et al (1997) An introduction to simple climate models used in the IPCC Second Assessment Report. IPCC Tech paper 2, Intergovernmental Panel on Climate Change, Geneva

  10. Hoddle MS (2003) The potential adventive geographic range of glassy-winged sharpshooter, Homalodisca coagulata and the grape pathogen Xylella fastidiosa: implications for California and other grape growing regions of the world. Crop Prot 23:691–699

    Article  Google Scholar 

  11. Holman IP, Allen DM, Cuthbert MO, Goderniaux P (2012) Towards best practice for assessing the impacts of climate change on groundwater. Hydrogeol J 20:1–4

    Article  Google Scholar 

  12. Holman IP, Harrison PA, Metzger MJ (2014) Cross-sectoral impacts of climate and socio-economic change in Scotland: implications for adaptation policy. Reg Environ Chang. doi:10.1007/s10113-014-0679-8

    Google Scholar 

  13. Hulme M, Wigley TML, Barrow EM, Raper SCB, Centella A, Smith S, Chipanshi AC (2000) Using a climate scenario generator for vulnerability and adaptation assessments: MAGICC and SCENGEN Version 2.4 Workbook. Climatic Research Unit, Norwich, UK

  14. Iglesias A, Quiroga S, Schlickenrieder J (2010) Climate change and agricultural adaptation: assessing management uncertainty for four crop types in Spain. Clim Res 44:83–94

    Article  Google Scholar 

  15. IPCC (2007) The Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Available at http://www.ipcc.ch/report/ar4/. Accessed November 2014

  16. IPCC (2013) The Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Available at http://www.ipcc.ch/report/ar5/wg1/. Accessed November 2014

  17. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394

    Article  Google Scholar 

  18. Mitchell TD (2003) Pattern scaling: an examination of the accuracy of the technique for describing future climates. Clim Chang 60:217–242

    Article  Google Scholar 

  19. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  20. New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25

    Article  Google Scholar 

  21. Rietveld MR (1978) A new method for estimating the regression coefficients in the formula relating solar radiation to sunshine. Agric Meteorol 19:243–252

    Article  Google Scholar 

  22. Santer BD, Wigley TML, Schlesinger ME, Mitchell JFB (1990) Developing climate scenarios from equilibrium GCM results. Report no. 47, Max Planck Institute für Meteorologie, Hamburg, Germany

  23. Semenov M, Stratonovitch P (2010) Use of multi-model ensembles from global climate models for assessment of climate change impacts. Clim Res 41:1–14

    Article  Google Scholar 

  24. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  25. Trnka M, Dubrovský M, Žalud Z (2004) Climate change impacts and adaptation strategies in spring barley production in the Czech Republic. Clim Chang 64:227–255

    Article  Google Scholar 

  26. Wells N, Goddard S, Hayes MJ (2004) A self-calibrating Palmer Drought Severity Index. J Clim 17:2335–2351

    Article  Google Scholar 

Download references

Acknowledgements

The experiments were made within the framework of CLIMSAVE FP7 EU project (no. 244031), WG4VALUE project (no. LD12029, funded by Ministry of Education, Youth and Sports of the Czech Republic), the OPVK project (no. CZ.1.07/2.3.00/20.0248) and KONTAKT II project (no. LH11010). The authors acknowledge the free access to GCM outputs (obtained from the IPCC’s Data Distribution Centre; http://www.ipcc-data.org/gcm/monthly/SRES_AR4/index.html) and the gridded observational climatological data [CRU TS 2.1 (Mitchell and Jones 2005) and CRU CL 2.0 (New et al. 2002); http://www.cru.uea.ac.uk/cru/data/hrg/]. MAGICC climate model (version 5.3) was obtained from http://www.cgd.ucar.edu/cas/wigley/magicc/. We also thank to two anonymous reviewers, whose comments helped to significantly improve this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin Dubrovsky.

Additional information

This article is part of a special issue on “Regional Integrated Assessment of Cross-sectoral Climate Change Impacts, Adaptation, and Vulnerability” with guest editors Paula A. Harrison and Pam M. Berry.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2.69 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dubrovsky, M., Trnka, M., Holman, I.P. et al. Developing a reduced-form ensemble of climate change scenarios for Europe and its application to selected impact indicators. Climatic Change 128, 169–186 (2015). https://doi.org/10.1007/s10584-014-1297-7

Download citation

Keywords

  • Climate Change Scenario
  • Palmer Drought Severity Index
  • Global Solar Radiation
  • European Corn Borer
  • Impact Index