Skip to main content

Temporal trends in extreme rainfall intensity and erosivity in the Mediterranean region: a case study in southern Tuscany, Italy

Abstract

Worldwide climate is likely to become more variable or extreme with increases in intense precipitation. In Mediterranean areas, climate change will increase the risks of droughts, flash floods and soil erosion. Despite rainfall intensity being a key factor in erosive processes, in these areas information on extreme rainfall intensity and the associated erosivity, based on high-temporal resolution data, is either non homogeneous or scarce. These parameters thus need to be assessed in order to highlight suitable adaptation strategies. In this paper, an hourly rainfall intensity (RI) data series is analyzed together with the corresponding 1-min rainfall intensity maximum (RIm) of 23 rainfall gauges located in Tuscany, Italy, in an area highly vulnerable to erosion. The aim is to look for temporal trends (1989–2010) in extreme rainfall intensity and erosivity. Fixed effect logistic regression shows statistically significant temporal increases in the number of RI and RIm exceedances over the 95th percentile threshold. Winter is shown to be the season with the strongest increasing trend in coastal and inland rainfall gauge groups, followed by spring for the coastal group and autumn for the inland group. Linear regressions show that in the inland group there is a temporal increase in rainfall erosivity and on a seasonal basis, the highest increase is observed in autumn. By contrast, for the coastal group this increasing trend is only detectable for spring and winter. Such an increase in rainfall erosivity and its potential continuation could have a strong adverse effect on Mediterranean land conservation.

This is a preview of subscription content, access via your institution.

References

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111(D05109):2006. doi:10.1029/2005JD006290

    Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA + for PRIMER. Guide to software and statistical methods. Primer-E Ltd, Plymouth

    Google Scholar 

  • Ángulo-Martínez M, Beguería S (2009) Estimating rainfall erosivity from daily precipitation records: a comparison among methods using data from the Ebro Basin (NE Spain). J Hydrol 379:111–121. doi:10.1016/j.jhydrol.2009.09.051

    Article  Google Scholar 

  • Ángulo-Martínez M, Beguería S (2012) Trends in rainfall erosivity in NE Spain at annual, seasonal and daily scales, 1955-2006. Hydrol Earth Syst Sci 16:3551–3559. doi:10.5194/hess-16-3551-2012

    Article  Google Scholar 

  • Arnone E, Pumo D, Viola F, Noto LV, La Loggia G (2013) Rainfall statistics changes in Sicily. Hydrol Earth Syst Sci 17:2449–2458. doi:10.5194/hessd-10-2323-2013

    Article  Google Scholar 

  • Bagarello V, Di Stefano C, Ferro V, Kinnell PIA, Pampalone V, Porto P, Todisco F (2011) Predicting soil loss on moderate slopes using an empirical model for sediment concentration. J Hydrol 400:267–273. doi:10.1016/j.jhydrol.2011.01.029

    Article  Google Scholar 

  • Bagarello V, Ferro V, Giordano G, Mannocchi F, Todisco F, Vergni L (2013) Predicting event soil loss from bare plots at two Italian sites. Catena 109:96–102. doi:10.1016/j.catena.2013.04.010

    Article  Google Scholar 

  • Bartolini G, Di Stefano V, Maracchi G, Orlandini S (2012) Mediterranean warming is especially due to summer season evidences from Tuscany (central Italy). Theor Appl Climatol 107:279–295. doi:10.1007/s00704-011-0481-1

  • Bartolini G, Messeri A, Grifoni D, Mannini D, Orlandini S (2013) Recent trends in seasonal and annual precipitation indices in Tuscany (Italy). Theor Appl Climatol. doi:10.1007/s00704-013-1053-3

    Google Scholar 

  • Bartolini G, Grifoni D, Torrigiani T, Vallorani R, Meneguzzo F, Gozzini B (2014) Precipitation changes from two long-term hourly datasets in Tuscany, Italy. Int J Climatol. doi:10.1002/joc.3956

    Google Scholar 

  • Bazzoffi P (2007) Erosione del Suolo e Sviluppo Rurale: fondamenti e manualistica per la valutazione agro ambientale. Edagricole, Bologna

    Google Scholar 

  • Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi P, Argese E, Giovannetti M (2009) Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol Biochem 41:1491–1496. doi:10.1016/j.soilbio.2009.04.005

    Article  Google Scholar 

  • Beguería S, Ángulo-Martínez M, Vicente-Serrano SM, López-Moreno JI, El-Kenawy A (2010) Assessing trends in extreme precipitation events intensity and magnitude using non-stationary peaks-over-threshold analysis: a case study in northeast Spain from 1930 to 2006. Int J Climatol 31:2102–2114. doi:10.1002/joc.2218

    Article  Google Scholar 

  • Berg P, Moseley C, Haerter JO (2013) Strong increase in convective precipitation in response to higher temperatures. Nat Geosci 6:181–185. doi:10.1038/ngeo1731

    Article  Google Scholar 

  • Berrang-Ford L, Ford JD, Paterson J (2011) Are we adapting to climate change? Glob Environ Chang 21:25–33. doi:10.1016/j.gloenvcha.2010.09.012

    Article  Google Scholar 

  • Bonari E, Debolini M (2010) Agricoltura ed erosione del suolo in Toscana. Felici Editore, Pisa

    Google Scholar 

  • Brown LC, Foster GR (1987) Storm erosivity using idealized intensity distributions. Trans Am Soc Agric Eng 30:379–386. doi:10.13031/2013.31957

    Article  Google Scholar 

  • Brunetti M, Maugeri M, Nanni T, Navarra A (2002) Droughts and extreme events in regional daily Italian precipitation series. Int J Climatol 22:543–558. doi:10.1002/joc.751

    Article  Google Scholar 

  • Brunetti M, Buffoni L, Mangianti F, Maugeri M, Nanni T (2004) Temperature, precipitation and extreme events during the last century in Italy. Glob Planet Chang 40:141–149. doi:10.1016/S0921-8181(03)00104-8

    Article  Google Scholar 

  • Brunetti M, Maugeri M, Monti F, Nanni T (2006) Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. Int J Climatol 26:345–381. doi:10.1002/joc.1251

    Article  Google Scholar 

  • Burlando P, Rosso R (2002) Effects of transient climate change on basin hydrology. 1. Precipitation scenarios for the Arno River, central Italy. Hydrol Process 16:1151–1175. doi:10.1002/hyp.1055

    Article  Google Scholar 

  • Capecchi V, Crisci A, Melani S, Morabito M, Politi P (2012) Fractal characterization of rain-gauge networks and precipitations: an application in Central Italy. Theor Appl Climatol 107:541–546. doi:10.1007/s00704-011-0503-z

    Article  Google Scholar 

  • Capolongo D, Diodato N, Mannaerts CM, Piccarreta M, Strobl RO (2008) Analyzing temporal changes in climate erosivity using a simplified rainfall erosivity model in Basilicata (southern Italy). J Hydrol 356:119–130. doi:10.1016/j.jhydrol.2008.04.002

    Article  Google Scholar 

  • Crisci A, Gozzini B, Grifoni D, Meneguzzo F, Zipoli G, Pagliara S (1999) Climatic variability and its impact on rainfall extremes and urban rainfall design in Tuscany. Hydrological extremes: understanding, predicting, mitigating. Int Assoc Hydrol Sci Publ 255:55–63

    Google Scholar 

  • Crisci A, Gozzini B, Meneguzzo F, Pagliara S, Maracchi G (2002) Extreme rainfall in a changing climate: regional analysis and hydrological implications in Tuscany. Hydrol Process 16:1261–1274. doi:10.1002/hyp.1061

    Article  Google Scholar 

  • Diodato N (2004) Local models for rainstorm-induced hazard analysis on Mediterranean river-torrential geomorphological systems. Nat Hazards Earth Sys 4:389–397. doi:10.5194/nhess-4-389-2004

    Article  Google Scholar 

  • Diodato N, Bellocchi G (2009) Environmental implications of erosive rainfall across the Mediterranean. Environmental impact assessments. In: Halley GT, Fridian YT (ed) Nova Publishers, New York, pp 75-101

  • Diodato N, Bellocchi G, Romano N, Chirico GB (2011) How the aggressiveness of rainfalls in the Mediterranean lands is enhanced by climate change. Clim Chang 108:591–599. doi:10.1007/s10584-011-0216-4

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074. doi:10.1126/science.289.5487.2068

    Article  Google Scholar 

  • EEA (European Environment Agency) (2006) Corine Land Cover 2006 seamless vector data. http://www.eea.europa.eu/data-and-maps/data/clc-2006-vector-data-version. Accessed 11 Dec 2013

  • Ercoli L, Masoni A, Pampana S, Mariotti M, Arduini I (2013) As durum wheat productivity is affected by nitrogen fertilisation management in central Italy. Eur J Agron 44:38–45. doi:10.1016/j.eja.2012.08.005

    Article  Google Scholar 

  • Fatichi S, Caporali E (2009) A comprehensive analysis of changes in precipitation regime in Tuscany. Int J Climatol 29:1883–1893. doi:10.1002/joc.1921

    Article  Google Scholar 

  • Frei C, Schär C (2001) Detection probability of trends in rare events: theory and application to heavy precipitation in the Alpine region. J Clim 14:1568–1584. doi:10.1175/1520-0442(2001)014<1568:DPOTIR>2.0.CO;2

    Article  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Chang 63:90–104. doi:10.1016/j.gloplacha.2007.09.005

    Article  Google Scholar 

  • González-Hidalgo JC, Batalla RJ, Cerdà A, de Luis M (2010) Contribution of the largest events to suspended sediment transport across the USA. Land Degrad Dev 21:83–91. doi:10.1002/ldr.897

    Article  Google Scholar 

  • Haylock M, Nicholls N (2000) Trends in extreme rainfall indices for an updated high quality data set for Australia, 1910–1998. Int J Climatol 20:1533–1541. doi:10.1002/1097-0088(20001115)20:13<1533::AID-JOC586>3.0.CO;2-J

    Article  Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPPC (2007) Climate Change 2007: Synthesis Report. http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf. Accessed 11 Dec 2013

  • Katz RW, Parlange MB, Naveau P (2002) Statistics of extremes in hydrology. Adv Water Resour 25:1287–1304. doi:10.1016/S0309-1708(02)00056-8

    Article  Google Scholar 

  • Koutsoyiannis D, Efstratiadis A, Mamassis N, Christofides A (2008) On the credibility of climate predictions. Hydrol Sci J 53:671–684. doi:10.1623/hysj.53.4.671

    Article  Google Scholar 

  • Lionello P, Boldrin U, Giorgi F (2008) Future changes in cyclone climatology over Europe as inferred from a regional climate simulation. Clim Dyn 30:657–671. doi:10.1007/s00382-007-0315-0

    Article  Google Scholar 

  • López-Vicente M, Navas A, Machín J (2008) Identifying erosive periods by using RUSLE factors in mountain fields of the Central Spanish pyrenees. Hydrol Earth Syst Sci 12:523–535. doi:10.5194/hess-12-523-2008

    Article  Google Scholar 

  • Maracchi G, Sirotenko O, Bindi M (2005) Impacts of present and future climate variability on agriculture and forestry in the temperate regions: Europe. Clim Chang 70:117–135. doi:10.1007/s10584-005-5939-7

    Article  Google Scholar 

  • Märker M, Angeli L, Bottai L, Costantini R, Ferrari R, Innocenti L, Siciliano G (2008) Assessment of land degradation susceptibility by scenario analysis: a case study in Southern Tuscany, Italy. Geomorphology 93:120–129. doi:10.1016/j.geomorph.2006.12.020

    Article  Google Scholar 

  • Marraccini E, Debolini M, Di Bene C, Rapey H, Bonari E (2012) Factors affecting soil organic matter conservation in Mediterranean hillside winter cereals-legumes cropping systems. Ital J Agron 7:283–292. doi:10.4081/ija.2012.e38

    Google Scholar 

  • Masoni A, Ercoli L, Bonari E, Mariotti M (1999) Ecologia agraria. I. Struttura dell’Ecosistema. SEU, Pisa

    Google Scholar 

  • Meusburger K, Steel A, Panagos P, Montanarella L, Alewell C (2012) Spatial and temporal variability of rainfall erosivity factor for Switzerland. Hydrol Earth Syst Sci 16:167–177. doi:10.5194/hess-16-167-2012

    Article  Google Scholar 

  • Moonen AC, Ercoli L, Mariotti M, Masoni A (2002) Climate change in Italy indicated by agrometeorological indices over 122 years. Agric Forest Meteorol 111:13–27. doi:10.1016/S0168-1923(02)00012-6

    Article  Google Scholar 

  • Mueller EN, Pfister A (2011) Increasing occurrence of high-intensity rainstorm events relevant for the generation of soil erosion in a temperate lowland region in Central Europe. J Hydrol 411:266–278. doi:10.1016/j.jhydrol.2011.10.005

    Article  Google Scholar 

  • Nunes JP, Seixas J, Keizer JJ, Ferreira AJD (2009) Sensitivity of runoff and soil erosion to climate change in two Mediterranean watersheds. Part II: assessing impacts from changes in storm rainfall, soil moisture and vegetation cover. Hydrol Process 23:1212–1220. doi:10.1002/hyp.7250

    Article  Google Scholar 

  • Ramos MC, Martínez-Casasnovas JA (2006) Trends in precipitation concentration and extremes in the Mediterranean Penedès-Anoia region, ne Spain. Clim Chang 74:457–474. doi:10.1007/s10584-006-3458-9

    Article  Google Scholar 

  • Reiser H, Kutiel H (2011) Rainfall uncertainty in the Mediterranean: time series, uncertainty, and extreme events. Theor Appl Climatol 104:357–375. doi:10.1007/s00704-010-0345-0

    Article  Google Scholar 

  • Renard KG, Foster GR, Weesies GA, Porter JP (1991) RUSLE - revised universal soil loss equation. J Soil Water Conserv 46:30–33

    Google Scholar 

  • Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook 703. United States Department of Agriculture (USDA), Washington D.C.

  • Salinger MJ, Griffiths GM (2001) Trends in New Zealand daily temperature and rainfall extremes. Int J Climatol 21:1437–1452. doi:10.1002/joc.694

    Article  Google Scholar 

  • Soil Survey Staff (1975) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. United States Department of Agriculture, Soil Conservation Service Handbook 436. US Government Printing Office, Washington, D.C.

  • Svoray T, Ben-Said S (2010) Soil loss, water ponding and sediment deposition variations as a consequence of rainfall intensity and land use: a multi-criteria analysis. Earth Surf Process Landf 35:202–216. doi:10.1002/esp.1901

    Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes. Clim Chang 79:185–211. doi:10.1007/s10584-006-9051-4

    Article  Google Scholar 

  • ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca

    Google Scholar 

  • Vallebona C, Genesio L, Crisci A, Pasqui M, Di Vecchia A, Maracchi G (2008) Large-scale climatic patterns forcing desert locust upsurges in West Africa. Clim Res 37:35–41. doi:10.3354/cr00744

    Article  Google Scholar 

  • Vanmaercke M, Maetens W, Poesen J, Jankauskas B, Jankauskiene G, Verstraeten G, de Vente J (2012) A comparison of measured catchment sediment yields with measured and predicted hillslope erosion rates in Europe. J Soils Sediments 12:586–602. doi:10.1007/s11368-012-0479-z

    Article  Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses, a guide to conservation planning. Agriculture Handbook 537. United States Department of Agriculture (USDA), Washington D.C

    Google Scholar 

  • Zolina O, Simmer C, Kapala A, Bachner S, Gulev SK, Maechel H (2008) Seasonally dependent changes of precipitation extremes over Germany since 1950 from a very dense observational network. J Geophys Res 113, D06110. doi:10.1029/2007JD008393

    Google Scholar 

Download references

Acknowledgments

We thank the reviewers for their constructive comments and suggestions. Chiara Vallebona’s contribution: work design, data collection and management, analysis of the data through logistic and linear regressions, interpretation of results, manuscript writing and proof reading. Elisa Pellegrino’s contribution: analysis of the data through RDA, CAP and PERMANOVAs, interpretation of results, manuscript writing and proof reading. This work is part of Chiara Vallebona’s PhD thesis project, which was funded by the Scuola Superiore Sant’Anna. We are grateful to the regional administration of Tuscany for access to the rainfall gauges records. Special thanks go to Mariassunta Galli for providing her valuable advices, and to Valerio Capecchi for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Vallebona.

Additional information

Chiara Vallebona and Elisa Pellegrino contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 361 kb)

ESM 2

(DOCX 361 kb)

ESM 3

(DOCX 323 kb)

ESM 4

(DOCX 12 kb)

ESM 5

(DOCX 154 kb)

ESM 6

(DOCX 283 kb)

ESM 7

(DOCX 255 kb)

ESM 8

(DOCX 2071 kb)

ESM 9

(DOCX 171 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vallebona, C., Pellegrino, E., Frumento, P. et al. Temporal trends in extreme rainfall intensity and erosivity in the Mediterranean region: a case study in southern Tuscany, Italy. Climatic Change 128, 139–151 (2015). https://doi.org/10.1007/s10584-014-1287-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-014-1287-9

Keywords

  • Soil Erosion
  • Temporal Trend
  • Rainfall Intensity
  • Extreme Rainfall
  • Rainfall Erosivity