Climatic Change

, Volume 127, Issue 3–4, pp 579–586 | Cite as

Probabilistic projections of the Atlantic overturning

  • Carl-Friedrich SchleussnerEmail author
  • Anders Levermann
  • Malte Meinshausen


Changes in the Atlantic overturning circulation have a strong influence on European temperatures, North American sea level and other climate phenomena worldwide. A meaningful assessment of associated societal impacts needs to be based on the full range of its possible future evolution. This requires capturing both the uncertainty in future warming pathways and the inherently long-term response of the ocean circulation. While probabilistic projections of the global mean and regional temperatures exist, process-based probabilistic assessments of large-scale dynamical systems such as the Atlantic overturning are still missing. Here we present such an assessment and find that a reduction of more than 50 % in Atlantic overturning strength by the end of the 21 s t century is within the likely range under an unmitigated climate change scenario (RCP8.5). By combining linear response functions derived from comprehensive climate simulations with the full range of possible future warming pathways, we provide probability estimates of overturning changes by the year 2100. A weakening of more than 25 % is found to be very unlikely under a climate protection scenario (RCP2.6), but likely for unmitigated climate change. The method is able to reproduce the modelled recovery caused by climatic equilibration under climate protection scenarios which provides confidence in the approach. Within this century, a reduction of the Atlantic overturning is a robust climatic phenomena that intensifies with global warming and needs to be accounted for in global adaptation strategies.


Atlantic Meridional Overturning Circulation Model Ensemble Linear Response Function Atlantic Meridional Overturning Circulation Strength Atlantic Meridional Overturning Circulation Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge the World Climate Research Programmes Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP the US Department of Energys Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement No. 603864. The authors would like to thank the reviewers for their comments that helped to improve the manuscript.

Supplementary material

10584_2014_1265_MOESM1_ESM.pdf (832 kb)
(PDF 831 KB)


  1. Bouttes N, Gregory JM, Kuhlbrodt T, Smith RS (2013) The drivers of projected North Atlantic sea level change. J Clim 43(5-6):1531–1544. doi: 10.1007/s00382-013-1973-8 Google Scholar
  2. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term Climate Change: Projections, Commitments and Irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New YorkGoogle Scholar
  3. Fasullo JT, Trenberth KE (2008) The annual cycle of the energy budget. Part II: Meridional Structures and Poleward Transports. J Clim 21(10):2313–2325. doi: 10.1175/2007JCLI1936.1 CrossRefGoogle Scholar
  4. Fettweis X, Franco B, Tedesco M, van Angelen JH, Lenaerts JTM, van den Broeke MR, Gallée H (2013) Estimating the greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. The Cryosphere 7(2):469–489. doi: 10.5194/tc-7-469-2013 CrossRefGoogle Scholar
  5. Good P, Gregory JM, Lowe JA (2011) A step-response simple climate model to reconstruct and interpret AOGCM projections. Geophys Res Lett 38(1):L01,703. doi: 10.1029/2010GL045208 CrossRefGoogle Scholar
  6. Gregory J, Dixon K, Stouffer R, Weaver A, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus J, et al. (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO 2 concentration. Geophys Res Lett 32:L12703. doi: 10.1029/2005GL023209 CrossRefGoogle Scholar
  7. Gregory JM, Tailleux R (2011) Kinetic energy analysis of the response of the Atlantic meridional overturning circulation to CO2-forced climate change. Clim Dyn 37(5-6):893–914. doi: 10.1007/s00382-010-0847-6 CrossRefGoogle Scholar
  8. Johns WE, Baringer MO, Beal LM, Cunningham SA, Kanzow T, Bryden HL, Hirschi JJM, Marotzke J, Meinen CS, Shaw B, Curry R (2011) Continuous, array-based estimates of Atlantic ocean heat transport at 26.5 degrees N. J Clim 24(10):2429–2449. doi: 10.1175/2010JCLI3997.1 CrossRefGoogle Scholar
  9. Johnson H, Marshall D (2002) A theory for the surface Atlantic response to thermohaline variability. J Phys Oceanogr 32:1121–1132CrossRefGoogle Scholar
  10. Kuhlbrodt T, Gregory JM (2012) Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys Res Lett 39:L18,608. doi: 10.1029/2012GL052952 CrossRefGoogle Scholar
  11. Levermann A, Griesel A, Hofmann M, Montoya M, Rahmstorf S (2005) Dynamic sea level changes following changes in the thermohaline circulation. Clim Dyn 24:347–354CrossRefGoogle Scholar
  12. Levermann A, Mignot J, Nawrath S, Rahmstorf S (2007) The role of northern sea ice cover for the weakening of the thermohaline circulation under global warming. J Clim 20(16):4160–4171. doi: 10.1175/JCLI4232.1 CrossRefGoogle Scholar
  13. Levermann A, Winkelmann R, Nowicki S, Fastook JL, Frieler K, Greve R, Hellmer HH, Martin MA, Meinshausen M, Mengel M, Payne AJ, Pollard D, Sato T, Timmermann R, Wang WL, Bindschadler RA (2014) Projecting antarctic ice discharge using response functions from searise ice-sheet models. Earth Syst Dyn 5:271–293. doi: 10.5194/esd-5-271-2014 CrossRefGoogle Scholar
  14. Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458(7242):1158–1162CrossRefGoogle Scholar
  15. Roberts CD, Jackson L, McNeall D (2014) Is the 2004–2012 reduction of the Atlantic meridional overturning circulation significant?. Geophys Res Lett 41(9):3204–3210. doi: 10.1002/2014GL059473 CrossRefGoogle Scholar
  16. Schleussner CF, Frieler K, Meinshausen M, Yin J, Levermann A (2011) Emulating Atlantic overturning strength for low emission scenarios: consequences for sea-level rise along the North American east coast. Earth Syst Dyn 2(2):191–200. doi: 10.5194/esd-2-191-2011 CrossRefGoogle Scholar
  17. Schleussner CF, Runge J, Lehmann J, Levermann A (2014) The role of the North Atlantic overturning and deep-ocean for multi-decadal global-mean-temperature variability. Earth Syst Dyn 4:967–1013. doi: 10.5194/esdd-4-967-2013 CrossRefGoogle Scholar
  18. Schmittner A (2005) Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation. Nature 434(7033):628–633. doi: 10.1038/nature03476 CrossRefGoogle Scholar
  19. Sijp WP, Gregory JM, Tailleux R, Spence P (2012) The Key Role of the Western Boundary in Linking the AMOC Strength to the North–South Pressure Gradient. J Phys Oceanogr 42(4):628–643. doi: 10.1175/JPO-D-11-0113.1 CrossRefGoogle Scholar
  20. Slangen ABA, Carson M, Katsman CA, van de Wal RSW, Köhl A, Vermeersen LLA, Stammer D (2014) Projecting twenty-first century regional sea-level changes. Clim Chang 124(1-2):317–332. doi: 10.1007/s10584-014-1080-9 CrossRefGoogle Scholar
  21. Smeed DA, McCarthy G, Cunningham SA, Frajka-Williams E, Rayner D, Johns WE, Meinen CS, Baringer MO, Moat BI, Duchez A, Bryden HL (2013) Observed decline of the Atlantic meridional overturning circulation 2004 to 2012. Ocean Sci Discuss 10(5):1619–1645. doi: 10.5194/osd-10-1619-2013 CrossRefGoogle Scholar
  22. Stocker TF, Qin D, Plattner G-K, Alexander LV, Allen SK, Bindoff NL, Bréon F-M, Church JA, Cubasch U, Emori S, Forster P, Friedlingstein P, Gillett N, Gregory JM, Hartmann DL, Jansen E, Kirtman B, Knutti R, Krishna Kumar K, Lemke P, Marotzke J, Masson-Delmotte V, Meehl GA, Mokhov II, Piao S, Ramaswamy V, Randall D, Rhein M, Rojas M, Sabine C, Shindell D, Talley LD, Vaughan DG, Xie S-P (2013) Technical Summary. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New YorkGoogle Scholar
  23. Taylor KE, Stouffer RJ, Meehl GA (2012) An Overview of CMIP5 and the Experiment Design. Bull Am Meteorol Soc 93(4):485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  24. Urban NM, Keller K (2010) Probabilistic hindcasts and projections of the coupled climate, carbon cycle and Atlantic meridional overturning circulation system: a Bayesian fusion of century-scale observations with a simple model Tellus AGoogle Scholar
  25. Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF et al (2011) The representative concentration pathways: an overview. Clim Chang 109(1-2):5–31CrossRefGoogle Scholar
  26. Weaver AJ, Sedláček J, Eby M, Alexander K, Crespin E, Fichefet T, Philippon-Berthier G, Joos F, Kawamiya M, Matsumoto K, Steinacher M, Tachiiri K, Tokos K, Yoshimori M, Zickfeld K (2012) Stability of the atlantic meridional overturning circulation: A model intercomparison. Geophys Res Lett 39(20):1–7. doi: 10.1029/2012GL053763 CrossRefGoogle Scholar
  27. Winkelmann R, Levermann A (2013) Linear response functions to project contributions to future sea level. Clim Dyn 40(11-12):2579–2588. doi: 10.1007/s00382-012-1471-4 CrossRefGoogle Scholar
  28. Yin J, Goddard PB (2013) Oceanic control of sea level rise patterns along the east Coast of the United States. Geophys Res Lett 40(20):5514–5520. doi: 10.1002/2013GL057992 CrossRefGoogle Scholar
  29. Yin J, Schlesinger ME, Stouffer RJ (2009) Model projections of rapid sea-level rise on the northeast coast of the United States. Nat Geosci 2:262–266CrossRefGoogle Scholar
  30. Zanchettin D, Rubino A, Jungclaus JH (2010) Intermittent multidecadal-to-centennial fluctuations dominate global temperature evolution over the last millennium. Geophys Res Lett 37(14):L14,702. doi: 10.1029/2010GL043717 CrossRefGoogle Scholar
  31. Zhang R, Delworth T (2005) Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J Clim 18:1853–1860CrossRefGoogle Scholar
  32. Zickfeld K, Eby M, Weaver AJ (2008) Carbon-cycle feedbacks of changes in the Atlantic meridional overturning circulation under future atmospheric CO2. Glob Biogeochem Cycles 22(3)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Carl-Friedrich Schleussner
    • 1
    • 2
    Email author
  • Anders Levermann
    • 1
    • 3
  • Malte Meinshausen
    • 1
    • 4
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Climate AnalyticsBerlinGermany
  3. 3.Institute of PhysicsPotsdam UniversityPotsdamGermany
  4. 4.School of Earth SciencesUniversity of MelbourneVictoriaAustralia

Personalised recommendations