Skip to main content
Log in

Pacific and Atlantic oceanic anomalies and their interaction with rainfall and fire in Bolivian biomes for the period 1992–2012

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Bolivia is located at the crossroad of the major climatic influences of Northern and Southern-South America, which turns this country into a natural laboratory to investigate the interactions between ocean-climate and fire variability. We chose two oceanic indices: MEI (multivariate ENSO Index) and AMO (Atlantic Multidecadal Oscillation) to select the three most representative years for four oceanic conditions: El Niño, La Niña, AMO, and standard years (understood as years with little ocean influences), for the period 1992–2012. We investigated how i) rainfall (dry vs wet seasons) and ii) fire responded in five Bolivian biomes (Tropical Moist Forests, Tropical Dry Forests, Tropical Grasslands, Tropical Montane, and Seasonally Flooded ecosystems) under these oceanic conditions. Bolivia showed a strong rainfall increase in El Niño years in both seasons (wet/dry), while AMO showed the strongest droughts in both seasons. La Niña showed a bipolar response with rainfall increases in the wet season and a very marked rainfall decrease in the dry season. Drought significantly increased fire numbers in AMO years, being the most significant fire condition and suggesting a larger fire influence of the Atlantic than the Pacific at the national level. Surprisingly, the amount of fire was very large under normal years (STD) and similar to fire levels under La Niña, suggesting generalized fire conditions in the country, except for El Niño years that bring rainfall excess and little fire. The most fire-affected biomes were the seasonally flooded and dry forests, followed by the grassland/savannah biome. Montane areas showed the least fire, but satellite fire omission is well known in the Andean region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aceituno P (1988) On the functioning of the Southern Oscillation in the South American sector. Part I. Climate sector. Mon Weather Rev 116:505–524

    Article  Google Scholar 

  • Aceituno P, Garreaud R (1995) The impact of ENSO phenomenon on rainfall regimes along the Andes cordillera. Rev Chil Ing Hidráulica 2:33–43

    Google Scholar 

  • Aragaõ LE, Malhi Y, Roman-Cuesta RM et al (2007) Spatial patterns and fire response of recent Amazonian droughts. Geophys Res Lett 34, L07701

    Article  Google Scholar 

  • Armenteras DA, Retana J, Molowny-Horas R et al (2011) Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agric For Meteorol 151:279–289

    Article  Google Scholar 

  • Barlow J, Peres C (2008) Fire mediated dieback and compositional cascade in an Amazonian forest. Philos Trans R Soc B 363:1787–1794

    Article  Google Scholar 

  • Bradley AV, Millington AC (2006) Spatial and temporal scale issues in determining biomass burning. Int J Remote Sens 27:2221–2253

    Article  Google Scholar 

  • Bradley R, Vuille M, Díaz H, Vergara W (2006) Threats to water supplies in the tropical Andes. Science 312:1755–1756

    Article  Google Scholar 

  • Chen Y, Randerson J, Morton D et al (2011) Forecasting fire season severity in South America using sea surface temperature anomalies. Science 334:787–791

    Article  Google Scholar 

  • Chen Y, Morton D, Jin Y et al (2013) Long-term trends and interannual variability of forest, savanna and agricultural fires in South America. Carbon Manag 4:617–638

    Article  Google Scholar 

  • Cochrane M, Laurence W (2002) Fire as a large-scale edge effect in Amazonian forests. J Trop Ecol 18:311–325

    Article  Google Scholar 

  • Cochrane MA, Alencar A, Schulze MD et al (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284:1832–1835

    Article  Google Scholar 

  • Cox PM, Harris PP, Huntingford C et al (2008) Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature 453:212–215

    Article  Google Scholar 

  • Dai A, Trenberth KE (1998) Global variations in droughts and wet spell: 1900–1995. Geophys Res Lett 25:3367–3370

    Article  Google Scholar 

  • Enfield DB, Mestas-Nunez AM, Trimble PJ (2001) The Atlantic Multidecadal Oscillation and its relationship to rainfall and river flows in the continental U.S. Geophys Res Lett 28:2077–2080

    Article  Google Scholar 

  • Fernandes K, Baethgen W, Bernades S et al (2011) North Tropical Atlantic influence on western Amazon fire season variability. Geophys Res Lett 38, L12701

    Article  Google Scholar 

  • Garreaud R (2000) Intraseasonal variability of moisture and rainfall over the South American Altiplano. Mon Weather Rev 128:3337–3346

    Article  Google Scholar 

  • Garreaud R, Aceituno P (2001) Interannual rainfall variability over the South American Altiplano. J Clim 14:2779–2789

    Article  Google Scholar 

  • Gonzalez P, Goddard L, Greene A (2012) Twentieth-century summer precipitation in South Eastern South America: comparison of gridded and station data. Int J Climatol. doi:10.1002/joc.3633

    Google Scholar 

  • Grimm A, Ferraz S, Gomes J (1998) Precipitation anomalies in Southern Brazil associated with El Niño and La Niña events. J Clim 12:1306–1321

    Google Scholar 

  • Harris I, Jones P, Osborn T, Lister D (2013) Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 dataset. Int J Climatol. doi:10.1002/joc.3711

    Google Scholar 

  • Kerr R (2000) A north Atlantic climate pacemaker for the centuries. Science 288:1984–1986

    Article  Google Scholar 

  • Killeen T, Douglas M, Consiglio T et al (2007) Dry spots and wet spots in the Andean hotspot. J Biogeogr 34:1357–1373

    Article  Google Scholar 

  • Kitzberger T, Swetnam T, Veblen T (2001) Inter-hemispheric synchrony of forest fires and the El Niño-Southern Oscillation. Glob Ecol Biogeogr 10:315–326

    Article  Google Scholar 

  • Kitzberger T, Brown P, Heyerdahl E et al (2007) Contingent Pacific-Atlantic Ocean Influence on multicentury wildfire synchrony over western North America. PNAS 104:543–548

    Article  Google Scholar 

  • Lenton T (2011) Early warning of climate tipping points. Nat Clim Chang 1:201–209

    Article  Google Scholar 

  • Lewis SL, Brando PM, Phillips OL et al (2011) The 2010 Amazon drought. Science 331:554

    Article  Google Scholar 

  • Liebmann B, Vera C, Carvalho L et al (2004) An observed trend in Central South American precipitation. J Clim 17:4357–4367

    Article  Google Scholar 

  • Malhi Y, Roberts JT, Betts RA et al (2008) Climate change, deforestation, and the fate of the Amazon. Science 319:169–172

    Article  Google Scholar 

  • Marengo J, Soares W, Saulo C, Nicolini M (2004) Climatology of the low-level jet east of the Andes as derived from the NCEPNCAR reanalyses: characteristics and temporal variability. J Clim 17:2261–2280

    Article  Google Scholar 

  • Marengo JA, Nobre CA, Tomasella J (2008) The drought of Amazonia in 2005. J Clim 21:495–516

    Article  Google Scholar 

  • Marengo JA, Tomasella J, Alves LM, et al (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38, L12703

    Article  Google Scholar 

  • Marengo JA, Tomasella J, Soares W et al (2012) Extreme climatic events in the Amazon basin. Climatological and hydrological context of recent floods. Theor Appl Climatol 107:73–85

    Article  Google Scholar 

  • Miranda C, Beck S (2003) La conservación de ecosistemas transfronterizos—El desafío peruano-boliviano en las vertientes orientales de los Andes y llanuras adyacentes. Lyonia 4:165–182

    Google Scholar 

  • Montecinos A, Díaz A, Aceituno P (2000) Seasonal diagnostic and predictability of rainfall in subtropical South America based on tropical Pacific SST. J Clim 13:746–758

    Article  Google Scholar 

  • Myers N, Mittermeier R, Mittermeier C et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  Google Scholar 

  • Nogués-Paegle J, Mechoso C, Fu R et al (2002) Understanding the South American monsoon. Prog Pan Am Clim 27:1–30

    Google Scholar 

  • Oliveras I, Anderson L, Malhi Y (2014) Applications of remote sensing to understanding fire regimes and biomass burning of the tropical Andes. Global Biogeochem Cycles. doi:10.1002/2013GB004664

    Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933–938

    Article  Google Scholar 

  • Phillips O, Aragaõ L, Lewis S et al (2009) Drought sensitivity of the Amazon rainforest. Science 323:1344–1346

    Article  Google Scholar 

  • Power M, Marlon J, Ortiz N et al (2008) Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Clim Dyn 30:887–907

    Article  Google Scholar 

  • Prentice I, Kelley D, Foster P et al (2011) Modeling fire and the terrestrial carbon balance. Glob Biogeochem Cycles 25, GB3005. doi:10.1029/2010GB003906

    Article  Google Scholar 

  • Rodríguez-Montellano A (2013) Dinámica de Incendios Forestales y Quemas en Bolivia. Fundación Amigos de la Naturaleza. Serie de Reportes Temáticos. Departamento Sta Cruz, Bolivia

    Google Scholar 

  • Roman-Cuesta RM, Retana J, Gracia M (2003) Environmental and human factors influencing fire trends in Enso and non-Enso years in tropical Mexico. Ecol Appl 13:1177–1192

    Article  Google Scholar 

  • Roman-Cuesta RM, Salinas N, Asbjornsen H et al (2011) Implications of fires on carbon budgets in Andean cloud montane forests: the importance of peatsoils and tree resprouting. For Ecol Manag 261:1987–1997

    Article  Google Scholar 

  • Roman-Cuesta RM, Carmona-Moreno C, Lizcano G et al (2014) Synchronous fire activity in the tropical high Andes: an indication of regional climate forcing. Glob Chang Biol. doi:10.1111/gcb.12538

    Google Scholar 

  • Ronchail R (1995) Interannual variability of rainfall in Bolivia. Bull Inst Fr Etudes Andines 24:369–378

    Google Scholar 

  • Ronchail J (1998) Variabilite pluviometrique en Bolivia lors des phases extremes de l’oscillation australe du Pacifique (1950–1993). Bull Inst Fr Etudes Andines 27:687–698

    Google Scholar 

  • Ronchail J, Cochonneau G, Molinier M et al (2002) Interannual rainfall variability in the Amazon basin and sea-surface temperatures in the equatorial Pacific and the tropical Atlantic Oceans. Int J Climatol 22:1663–1686

    Article  Google Scholar 

  • Ronchail J, Bourrel L, Cochonneau G et al (2005) Inundations in the Marmore Basin (south-western Amazon Bolivia) and sea surface temperature in the Pacific and Atlantic Oceans. J Hydrol 302:223–238

    Article  Google Scholar 

  • Schoennagel T, Veblen T, Romme W et al (2005) ENSO and PDO variability affect drought-induced fire occurrence in rocky mountain subalpine forests. Ecol Appl 15:2000–2014

    Article  Google Scholar 

  • Swetnam T (1993) Fire history and climate change in Giant Sequoia groves. Science 262:885–889

    Article  Google Scholar 

  • Tansey K, Beston J, Hoscilo A et al (2008) Relationship between MODIS fire hotspot count and burned area in a degraded tropical peat swamp forest in Central Kalimantan Indonesia. J Geophys Res 113, D23112

    Article  Google Scholar 

  • Trenberth KE, Hoar TJ (1997) El Niño and climate change. Geophys Res Lett 24:3057–3060

    Article  Google Scholar 

  • Uhl C, Kauffman J (1990) Deforestation effects on fire susceptibility and the potential response of the tree species to fire in the rain forest of the eastern Amazon. Ecology 71:437–449

    Article  Google Scholar 

  • Urrego D, Niccum B, La Drew C et al (2011) Fire and drought as drivers of early Holocene tree line changes in the Peruvian Andes

  • Urrego D, Bush M, Silman M et al (2013) Holocene fires, forest stability and human occupation in south-western Amazonia. J Biogeogr 40:521–533

    Article  Google Scholar 

  • Van der Werf G, Randerson J, Collatz J et al (2004) Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period. Science 303:73–76

    Article  Google Scholar 

  • Veblen T, Kitzberger T, Villalba R et al (1999) Fire history in northern Patagonia: the roles of humans and climatic variation. Ecol Monogr 69:47–67

    Article  Google Scholar 

  • Vuille M (1999) Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the Southern Oscillation. Int J Climatol 19:1579–1600

    Article  Google Scholar 

  • Vuille M, Bradley R, Keimig F (2000) Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. J Geophys Res 105:12447–12460

    Article  Google Scholar 

  • Vuille M, Bradley R, Werner M, Keimig F (2003) 20th century observations in the tropical Andes: observations and model results. Clim Chang 59:75–99

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Consejo Nacional de Ciencia y Tecnología (CONACYT) and CREAF. We also express our gratitude to the Alexander Von Humboldt Foundation for support to RMRC during the design and writing of this research. We are very grateful to Virginia Rocha Quispe (SENHAMI) for her help with the data set of meteorological data and to Jordi Vayreda for his collaboration in the structure of the data set.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Roman-Cuesta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roman-Cuesta, R.M., Rejalaga-Noguera, L., Pinto-García, C. et al. Pacific and Atlantic oceanic anomalies and their interaction with rainfall and fire in Bolivian biomes for the period 1992–2012. Climatic Change 127, 243–256 (2014). https://doi.org/10.1007/s10584-014-1246-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-014-1246-5

Keywords

Navigation