Climatic Change

, Volume 132, Issue 3, pp 387–400 | Cite as

Cross-sectoral integration in regional adaptation to climate change via participatory scenario development

Article

Abstract

In the research project nordwest2050, scientists and stakeholders from Northwestern Germany jointly develop a long-term strategy (time horizon 2050) to increase the regional resilience, with respect to uncertainties of both regional climate change and socio-economic developments. This roadmap is based upon sectoral adaptation strategies. As the first step in the development of the roadmap, framing scenarios for the external driving forces were built. These scenarios both incorporate the different regional climate projections in consistent regional developments and capture the most relevant socio-economic uncertainties from the sectors involved. The main difficulty in building the scenarios was the cross-sectoral integration of the different perspectives from the various sectors, which is necessary to be able to integrate the sectoral adaptation strategies in the regional roadmap. Therefore we built the framing scenarios with strong participation of stakeholders from all the sectors. We present the methodology used to build the scenarios and discuss the insights we drew from the process. Our findings support the thesis that it is important to integrate the stakeholders in the building of the scenarios to achieve acceptance and enable learning. Even more, their feedback should already be incorporated in the early stages of the process and the intermediate steps should be kept transparent.

Supplementary material

10584_2014_1231_MOESM1_ESM.pdf (55 kb)
(PDF 54.7 KB)

References

  1. Schuchardt B, Wittig S, Spiekermann J (2010) Klimaszenarien für NordWest2050. Teil 2: Randbedingungen und Beschreibung. nordwest2050 working paper no 3, BremenGoogle Scholar
  2. Schuchardt B (2012) Vulnerabilität der Metropolregion Bremen-Oldenburg gegenüber dem Klimawandel. nordwest2050 report no 2, Bremen/Oldenburg Wittig S (ed)Google Scholar
  3. Gößling-Reisemann S, Wachsmuth J, Stührmann S, Gleich A (2013) Climate change and structural vulnerability of a metropolitan energy supply system – the case of Bremen-Oldenburg in Northwest Germany. J Ind Ecol, accepted for publication. Bremen-Oldenburg, GermanyGoogle Scholar
  4. Holling CS (1973) Resilience and stability of ecological systems. Ann Rev Ecol Syst 4:1–23CrossRefGoogle Scholar
  5. Folke C, Carpenter SR, Walker BH, Scheffer M, Elmqvist T, Gunderson LH, Holling CS (2004) Regime shifts, resilience, and biodiversity in ecosystem management. Ann Rev Ecol Evol Syst 35:557–581CrossRefGoogle Scholar
  6. Gleich A, Gößling-Reisemann S, Stührmann S, Woizescke P, (2010) In: Fichter K, Gleich A, Pfriem R, Siebenhüner B (eds) Resilienz als Leitkonzept – Vulnerabilität als analytische Kategorie. In:Theoretische Grundlagen für Klimaanpassungsstrategien,report no 1. Oldenburg, nordwest2050Google Scholar
  7. Gleich A (2007) In: Lehmann-Waffenschmidt M (ed) Innovation Ability and Innovation Direction (Comment). Physika Verlag, New YorkGoogle Scholar
  8. Beucker S, Brand U, Fichter K, Gleich A (2011) Leitorientiertes integriertes Roadmapping. Konzeptionelle Grundlagen und Methode für die Entwicklung von Klimaanpassungsinnovationen. nordwest2050 working paper no 10, BremenGoogle Scholar
  9. Wiek A, Walter AI (2009) A transdisciplinary approach for formalized integrated planning and decision-making in complex systems. Eur J Oper Res 97:360–370CrossRefGoogle Scholar
  10. Hulme M, Dessai S (2008) Predicting, deciding, learning: can one evaluate the ’success’ of national climate scenarios?. Environ Res Lett 3(4):045013CrossRefGoogle Scholar
  11. Chermack TJ (2004) Improving decision-making with scenario planning. Futur 36:295–309CrossRefGoogle Scholar
  12. van der Heijden K (2005) Scenarios: The Art of Strategic Conversation, 2nd edn. Wiley, ChichesterGoogle Scholar
  13. van Drunen MA, van’t Klooster SA, Berkhout F (2011) Bounding the future: The use of scenarios in assessing climate change impacts. Futur 43:488–496CrossRefGoogle Scholar
  14. Berkhout F, Hertin J, Jordan A (2002) Socio-economic futures in climate change impact assessment: using scenarios as learning machines. Glob Environ Chang 12:83–95CrossRefGoogle Scholar
  15. Carlsen H, Dreborg KH, Wikman-Svahn P (2012) Tailor-made scenario planning for local adaptation to climate change. Mitig Adapt Strateg Glob Change doi:10.1007/s11027-012-9419-x.
  16. Reibnitz U (1988) Scenario Techniques. McGraw-Hill, HamburgGoogle Scholar
  17. Pill J (1971) The Delphi Method: Substance, Context, a Critique and an Annotated Bibliography. Socio-Econ Plan Sci 5:57–71CrossRefGoogle Scholar
  18. Weimer-Jehle W (2006) Cross-impact balances: A system-theoretical approach to cross-impact analysis. Technol Forecast Soc Chang 73:334–361CrossRefGoogle Scholar
  19. Nakicenovic N (2000) In: Swart R (ed) Emission Scenarios, A Special Report of Working Group III of the Intergovernmental Panel on Climate Change-. Cambridge University Press, CambridgeGoogle Scholar
  20. Weimer-Jehle W, Wassermann S (2011) Konsistente Rahmendaten für Modellierungen und Szenariobildung im Umweltbundesamt, Accessed 18 Sep 2012, Kosow, H. http://www.umweltdaten.de/publikationen/fpdf-l/4096.pdf
  21. Institut für Mobilitätsforschung (2010) Zukunft der Mobilität – Szenarien für das Jahr 2030, Zweite Fortschreibung (ifmo-Studien).Accessed 18 Sep 2012. http://www.ifmo.de/basif/pdf/publikationen/2010/100531_Szenarien_2030.pdf.
  22. Rhyne R (1995) Field anomaly relaxation: The arts of usage. Futur 27:657–674CrossRefGoogle Scholar
  23. Ruth M, Blohm A, Gasper R, Karlstetter N, Wachsmuth J, Beermann M, Eickemeier T, Gößling-Reisemann S, Akamp M (2012) Dynamic modeling of regional climate adaptation needs and options. HI, KauaiGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Research Center for Sustainability StudiesUniversitaet BremenBremenGermany

Personalised recommendations