Climatic Change

, Volume 125, Issue 3–4, pp 319–331 | Cite as

Economic impacts of alternative greenhouse gas emission metrics: a model-based assessment

  • Jessica StreflerEmail author
  • Gunnar Luderer
  • Tino Aboumahboub
  • Elmar Kriegler


In this paper we study the impact of alternative metrics on short- and long-term multi-gas emission reduction strategies and the associated global and regional economic costs and emissions budgets. We compare global warming potentials with three different time horizons (20, 100, 500 years), global temperature change potential and global cost potentials with and without temperature overshoot. We find that the choice of metric has a relatively small impact on the CO2 budget compatible with the 2° target and therefore on global costs. However it substantially influences mid-term emission levels of CH4, which may either rise or decline in the next decades as compared to today’s levels. Though CO2 budgets are not affected much, we find changes in CO2 prices which substantially affect regional costs. Lower CO2 prices lead to more fossil fuel use and therefore higher resource prices on the global market. This increases profits of fossil-fuel exporters. Due to the different weights of non-CO2 emissions associated with different metrics, there are large differences in nominal CO2 equivalent budgets, which do not necessarily imply large differences in the budgets of the single gases. This may induce large shifts in emission permit trade, especially in regions where agriculture with its high associated CH4 emissions plays an important role. Furthermore it makes it important to determine CO2 equivalence budgets with respect to the chosen metric. Our results suggest that for limiting warming to 2 °C in 2100, the currently used GWP100 performs well in terms of global mitigation costs despite its conceptual simplicity.


Global Warming Potential Abatement Cost Marginal Abatement Cost Permit Trade Mitigation Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

10584_2014_1188_MOESM1_ESM.docx (815 kb)
ESM 1 (DOCX 815 kb)


  1. Aaheim A, Fuglestvedt JS, Godal O (2006) Costs Savings of a Flexible Multi-Gas Climate Policy. The Energy JournalGoogle Scholar
  2. Aboumahboub T, Luderer G, Kriegler E, et al. (2013) On the regional distribution of climate mitigation costs: the impact of delayed cooperative action. Climate Change Economics. Available at:
  3. Bauer N, Baumstark L, Leimbach M (2012) The REMIND-R model: the role of renewables in the low-carbon transformation - first-best vs. second-best worlds. Clim Chang 114:145–168. doi: 10.1007/s10584-011-0129-2 CrossRefGoogle Scholar
  4. Brennan ME, Zaitchik BF (2013) On the potential for alternative greenhouse gas equivalence metrics to influence sectoral mitigation patterns. Environ Res Lett 8:014033. doi: 10.1088/1748-9326/8/1/014033 CrossRefGoogle Scholar
  5. Cox PM, Jeffery HA (2010) Methane radiative forcing controls the allowable CO2 emissions for climate stabilization. Curr Opin Environ Sustain 2:404–408. doi: 10.1016/j.cosust.2010.09.007 CrossRefGoogle Scholar
  6. Deuber O, Luderer G, Edenhofer O (2013) Physico-economic evaluation of climate metrics: a conceptual framework. Environ Sci Pol 29:37–45. doi: 10.1016/j.envsci.2013.01.018 CrossRefGoogle Scholar
  7. Ekholm T, Lindroos TJ, Savolainen I (2013) Robustness of climate metrics under climate policy ambiguity. Environ Sci Pol 31:44–52. doi: 10.1016/j.envsci.2013.03.006 CrossRefGoogle Scholar
  8. Forster P, Ramaswamy V, Artaxo P et al. (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The physical science basis: Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 129–234Google Scholar
  9. Fuglestvedt J, Berntsen T, Godal O et al. (2003) Metrics of climate change: assessing radiative forcing and emission indices. Clim Chang 58:267–331. doi: 10.1023/A:1023905326842 CrossRefGoogle Scholar
  10. Fuglestvedt JS, Shine KP, Berntsen T et al. (2010) Transport impacts on atmosphere and climate: metrics. Atmos Environ 44:4648–4677. doi: 10.1016/j.atmosenv.2009.04.044 CrossRefGoogle Scholar
  11. Johansson DA (2012) Economics- and physical-based metrics for comparing greenhouse gases. Clim Chang 110:123–141. doi: 10.1007/s10584-011-0072-2 CrossRefGoogle Scholar
  12. Johansson DA, Persson UM, Azar C (2006) The cost of using global warming potentials: analysing the trade off between CO2, CH4 and N2O. Clim Chang 77:291–309. doi: 10.1007/s10584-006-9054-1 CrossRefGoogle Scholar
  13. Kandlikar M (1996) Indices for comparing greenhouse gas emissions: integrating science and economics. Energy Econ 18:265–281. doi: 10.1016/S0140-9883(96)00021-7 CrossRefGoogle Scholar
  14. Lashof DA, Ahuja DR (1990) Relative contributions of greenhouse gas emissions to global warming. Nature 344:529–531. doi: 10.1038/344529a0 CrossRefGoogle Scholar
  15. Leimbach M, Bauer N, Baumstark L, Edenhofer O (2010) Mitigation costs in a globalized world: climate policy analysis with REMIND-R. Environ Model Assess 15:155–173. doi: 10.1007/s10666-009-9204-8 CrossRefGoogle Scholar
  16. Lotze-Campen H, Müller C, Bondeau A et al. (2008) Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach. Agric Econ. doi: 10.1111/j.1574-0862.2008.00336.x Google Scholar
  17. Lucas PL, van Vuuren DP, Olivier JGJ, den Elzen MGJ (2007) Long-term reduction potential of non-CO2 greenhouse gases. Environ Sci Pol 10:85–103. doi: 10.1016/j.envsci.2006.10.007 CrossRefGoogle Scholar
  18. Luderer G, Pietzcker RC, Kriegler E et al. (2012a) Asia’s role in mitigating climate change: a technology and sector specific analysis with ReMIND-R. Energy Econ 34(3):S378–S390. doi: 10.1016/j.eneco.2012.07.022 CrossRefGoogle Scholar
  19. Luderer G, DeCian E, Hourcade J-C et al. (2012b) On the regional distribution of mitigation costs in a global cap-and-trade regime. Clim Chang 114:59–78. doi: 10.1007/s10584-012-0408-6 CrossRefGoogle Scholar
  20. Luderer G, Leimbach M, Bauer N et al. (2013a) Description of the REMIND model (Version 1.5). Available at:
  21. Luderer G, Pietzcker RC, Bertram C et al. (2013b) Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environ Res Lett 8:034033. doi: 10.1088/1748-9326/8/3/034033 CrossRefGoogle Scholar
  22. Manne AS, Richels RG (2001) An alternative approach to establishing trade-offs among greenhouse gases. Nature 410:675–677. doi: 10.1038/35070541 CrossRefGoogle Scholar
  23. Meinshausen M, Raper SCB, Wigley TML (2011) Emulating coupled atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6 - part 1: model description and calibration. Atmos Chem Phys 11:1417–1456. doi: 10.5194/acp-11-1417-2011 CrossRefGoogle Scholar
  24. Myhre G, Shindell D, Bréon F-M et al. (2013) Anthropogenic and Natural Radiative Forcing. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate ChangeGoogle Scholar
  25. O’Neill B (2000) The jury is still out on global warming potentials. Clim Chang 44:427–443. doi: 10.1023/A:1005582929198 CrossRefGoogle Scholar
  26. O’Neill B (2003) Economics, natural science, and the costs of global warming potentials. Clim Chang 58:251–260. doi: 10.1023/A:1023968127813 CrossRefGoogle Scholar
  27. Reisinger A, Havlik P, Riahi K et al. (2012) Implications of alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture. Clim Chang 1–14. doi: 10.1007/s10584-012-0593-3
  28. Schmalensee R (1993) Comparing greenhouse gases for policy purposes. Energy J 14:245–255CrossRefGoogle Scholar
  29. Shine K, Fuglestvedt J, Hailemariam K, Stuber N (2005) Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim Chang 68:281–302. doi: 10.1007/s10584-005-1146-9 CrossRefGoogle Scholar
  30. Shine KP, Berntsen TK, Fuglestvedt JS et al. (2007) Comparing the climate effect of emissions of short- and long-lived climate agents. Philos Trans R Soc A Math Phys Eng Sci 365:1903–1914. doi: 10.1098/rsta.2007.2050 CrossRefGoogle Scholar
  31. Smith SJ, Karas J, Edmonds J et al. (2012) Sensitivity of multi-gas climate policy to emission metrics. Clim Chang 117:663–675. doi: 10.1007/s10584-012-0565-7 CrossRefGoogle Scholar
  32. Tanaka K, Johansson DJA, O’Neill BC, Fuglestvedt JS (2013) Emission metrics under the 2 °C climate stabilization target. Clim Chang 117:933–941. doi: 10.1007/s10584-013-0693-8 CrossRefGoogle Scholar
  33. Tavoni M, Kriegler E, Aboumahboub T et al. (2014) The distribution of the major economies’ effort in the Durban platform scenarios. Climate Change Economics. Available at: (in press)
  34. Tol RSJ, Berntsen TK, O’Neill BC et al. (2012) A unifying framework for metrics for aggregating the climate effect of different emissions. Environ Res Lett 7:044006CrossRefGoogle Scholar
  35. UNFCCC (2012) Report on the workshop on common metrics to calculate the carbon dioxide equivalence of greenhouse gases. Available at:
  36. Van Vuuren DP, Weyant J, de la Chesnaye F (2006) Multi-gas scenarios to stabilize radiative forcing. Energy Econ 28:102–120. doi: 10.1016/j.eneco.2005.10.003 CrossRefGoogle Scholar
  37. Weyant JR, de la Chesnaye FC, Blanford GJ (2006) Overview of EMF-21: Multigas mitigation and climate policy. Energy J 1–32Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jessica Strefler
    • 1
    Email author
  • Gunnar Luderer
    • 1
  • Tino Aboumahboub
    • 1
  • Elmar Kriegler
    • 1
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany

Personalised recommendations