Climatic Change

, Volume 122, Issue 4, pp 567–582 | Cite as

Projections of temperature and precipitation extremes in the North Western Mediterranean Basin by dynamical downscaling of climate scenarios at high resolution (1971–2050)

  • A. Barrera-Escoda
  • M. Gonçalves
  • D. Guerreiro
  • J. Cunillera
  • J. M. Baldasano
Article

Abstract

The North Western Mediterranean basin (NWMB) is characterised by a highly complex topography and an important variability of temperature and precipitation patterns. Downscaling techniques are required to capture these features, identify the most vulnerable areas to extreme changes and help decision makers to design strategies of mitigation and adaptation to climate change. A Regional Climate Model, WRF-ARW, is used to downscale the IPCC-AR4 ECHAM5/MPI-OM General Circulation Model results with high resolution (10 km), considering three different emissions scenarios (B1, A1B and A2) for 2001–2050. Model skills to reproduce observed extremes are assessed for a control period, 1971–2000, using the ERA40 reanalysis to drive the WRF-ARW simulations. A representative set of indices for temperature and precipitation extremes is projected. The modelling system correctly reproduces amplitude and frequency of extremes and provides a high degree of detail on variability over neighbouring areas. However, it tends to overestimate the persistence of wet events and consequently slightly underestimate the length of dry periods. Drier and hotter conditions are generally projected for the NWMB, with significant increases in the duration of droughts and the occurrence of heavy precipitation events. The projected increase in the number of tropical nights and extreme temperatures could have a negative effect on human health and comfort conditions. Simulations allow defining specifically vulnerable areas, such as the Ebro Valley or the Pyrenees, and foreseeing impacts on socio-economic activities in the region.

Supplementary material

10584_2013_1027_MOESM1_ESM.gif (696 kb)
ESM 1(GIF 695 kb)
10584_2013_1027_MOESM2_ESM.pdf (1.8 mb)
ESM 2(PDF 1877 kb)
10584_2013_1027_MOESM3_ESM.gif (726 kb)
ESM 3(GIF 726 kb)
10584_2013_1027_MOESM4_ESM.pdf (1.8 mb)
ESM 4(PDF 1851 kb)
10584_2013_1027_MOESM5_ESM.pdf (6.9 mb)
ESM 5(PDF 7099 kb)
10584_2013_1027_MOESM6_ESM.pdf (7.3 mb)
ESM 6(PDF 7501 kb)
10584_2013_1027_MOESM7_ESM.pdf (3.9 mb)
ESM 7(PDF 4004 kb)
10584_2013_1027_MOESM8_ESM.pdf (4.6 mb)
ESM 8(PDF 4673 kb)

References

  1. Alpert P, Ben-Gai T, Baharad A et al (2002) The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys Res Lett 29:1536. doi:10.1029/2001GL013554 CrossRefGoogle Scholar
  2. Altava-Ortiz V (2010) Caracterització i monitoratge de les sequeres a Catalunya i nord del País Valencià. Càlcul d’escenaris climàtics per al segle XXI, Dissertation, Department of Astronomy and Meteorology, University of BarcelonaGoogle Scholar
  3. Argüeso D, Hidalgo-Muñoz JM, Gámiz-Fortis SR et al (2012a) Evaluation of WRF mean and extreme precipitation over Spain: Present climate (1970–1999). J Clim 25:4883–4897. doi:10.1175/JCLI-D-11-00276.1 CrossRefGoogle Scholar
  4. Argüeso D, Hidalgo-Muñoz JM, Gámiz-Fortis SR et al (2012b) High-resolution projections of mean and extreme precipitation over Spain using the WRF model (2070–2099 versus 1970–1999). J Geophys Res 117, D12108. doi:10.1029/2011JD017399 Google Scholar
  5. Barrera-Escoda A (2008) Evolución de los extremos hídricos en Catalunya en los últimos 500 años y su modelización regional, Dissertation, Department of Astronomy and Meteorology, University of Barcelona. Available at http://www.zucaina.net/Publicaciones/Barrera-Escoda-TESIS-2008.pdf
  6. Beniston M, Stephenson DB, Christensen OB et al (2007) Future extreme events in European climate: An exploration of regional climate model projections. Clim Chang 81:71–95. doi:10.1007/s10584-006-9226-z CrossRefGoogle Scholar
  7. Boberg F, Berg P, Thejll P et al (2010) Improved confidence in climate change projections of precipitation further evaluated using daily statistics from ENSEMBLES models. Clim Dyn 35:1509–1520. doi:10.1007/s00382-009-0683-8 CrossRefGoogle Scholar
  8. Brunet M, Jones PD, Sigró J et al (2007) Temporal and spatial temperature variability and change over Spain during 1850–2005. J Geophys Res 112, D12117. doi:10.1029/2006JD008249 CrossRefGoogle Scholar
  9. Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Chang 81:7–30. doi:10.1007/s10584-006-9210-7 CrossRefGoogle Scholar
  10. Christensen JH, Hewitson B, Busuioc A et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 847–940Google Scholar
  11. Dankers R, Feyen L (2009) Flood hazard in Europe in an ensemble of regional climate scenarios. J Geophys Res 114, D16108. doi:10.1029/2008JD011523 CrossRefGoogle Scholar
  12. Del Río S, Cano-Ortiz A, Herrero L et al (2012) Recent trends in mean maximum and minimum air temperatures over Spain (1961–2006). Theor Appl Climatol 109:605–626. doi:10.1007/s00704-012-0593-2 CrossRefGoogle Scholar
  13. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107CrossRefGoogle Scholar
  14. Gao X, Giorgi F (2008) Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Global Planet Change 62:195–209. doi:10.1016/j.gloplacha.2008.02.002 CrossRefGoogle Scholar
  15. Gao X, Pal JS, Giorgi F (2006) Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation. Geophys Res Lett 33, L03706. doi:10.1029/2005GL024954 Google Scholar
  16. Giannakopoulos C, Le Sagera P, Bindi M et al (2009) Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. Global Planet Change 68:209–224. doi:10.1016/j.gloplacha.2009.06.001 CrossRefGoogle Scholar
  17. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet Change 63:90–104. doi:10.1016/j.gloplacha.2007.09.005 CrossRefGoogle Scholar
  18. Giorgi F, Mearns LO (1991) Approaches to the simulation of regional climate change: A review. Rev Geophys 29:191–216CrossRefGoogle Scholar
  19. Gómez-Navarro JJ, Montávez JP, Jerez S et al (2012) What is the role of the observational dataset in the evaluation and scoring of climate models? Geophys Res Lett 39, L24701. doi:10.1029/2012GL054206 Google Scholar
  20. Gonçalves M, Barrera-Escoda A, Guerreiro D et al (2013) Assessment of temperature and precipitation trends in the North Western Mediterranean Basin by dynamical downscaling of climate scenarios at high resolution (1971–2050). Climatic Change, SubmittedGoogle Scholar
  21. Goodess CM, Jones PD (2002) Links between circulation and changes in the characteristics of Iberian rainfall. Int J Climatol 22:1593–1615. doi:10.1002/joc.810 CrossRefGoogle Scholar
  22. Heinrich G, Gobiet A (2012) The future of dry and wet spells in Europe: A comprehensive study based on the ENSEMBLES regional climate models. Int J Climatol 32:1951–1970. doi:10.1002/joc.2421 CrossRefGoogle Scholar
  23. Herrera S, Fita L, Fernández J, Gutiérrez JM (2010) Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulations over Spain. J Geophys Res 115, D21117. doi:10.1029/2010JD013936 CrossRefGoogle Scholar
  24. Herrera S, Gutiérrez JM, Ancell R et al (2012) Development and analysis of a 50 year high-resolution daily gridded precipitation dataset over Spain (Spain02). Int J Climatol 32:74–85. doi:10.1002/joc.2256 CrossRefGoogle Scholar
  25. Hong S, Dudhia J, Chen S (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132:103–132. doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2 CrossRefGoogle Scholar
  26. Hong S, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341. doi:10.1175/MWR3199.1 CrossRefGoogle Scholar
  27. Iacono MJ et al (2008) Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J Geophys Res 113, D13103. doi:10.1029/2008JD009944 CrossRefGoogle Scholar
  28. IPCC (2007) Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  29. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaption (SREX). A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge. Available at http://ipcc-wg2.gov/SREX/images/uploads/SREX-All_FINAL.pdf
  30. Jerez S, Montávez JP, Jiménez-Guerrero P et al (2013) A multi-physics ensemble of present-day climate regional simulations over the Iberian Peninsula Clim Dyn 40:3023–3046. doi:10.1007/s00382-012-1539-1 Google Scholar
  31. Jiménez-Guerrero P, Montávez JP, Domínguez M et al (2013) Mean fields and interannual variability in RCM simulations over Spain: the ESCENA project. Clim Res 57:201–220. doi:10.3354/cr01165 CrossRefGoogle Scholar
  32. Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181Google Scholar
  33. Kjellström E, Bärring L, Jacob D et al (2007) Modelling daily temperature extremes: Recent climate and futures changes over Europe. Clim Chang 81:249–265. doi:10.1007/s10584-006-9220-5 CrossRefGoogle Scholar
  34. Lehner B, Döll P, Alcamo J et al (2006) Estimating the impact of global change on flood and drought risks in Europe: A continental, integrated analysis. Clim Chang 75:273–299. doi:10.1007/s10584-006-6338-4 CrossRefGoogle Scholar
  35. Llasat MC, Llasat-Botija M, López L (2009) A press database on natural risks and its application in the study of floods in Northeastern Spain. Nat Hazards Earth Syst Sci 9:2049–2061. doi:10.5194/nhess-9-2049-2009 CrossRefGoogle Scholar
  36. Marsland SJ, Haak H, Jungclaus JH et al (2003) The Max-Planck-Institute global ocean/sea-ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127. doi:10.1016/S1463-5003(02)00015-X CrossRefGoogle Scholar
  37. Munich Re (2006) Annual review: Natural catastrophes 2005. Topics Geo, Munich Reinsurance Group, Munich. Available at http://www.preventionweb.net/files/1609_topics2005.pdf
  38. Nakićenović N, Alcamo J, Davis G et al. (2000) Emissions Scenarios 2000–Special Report of the Intergovernmental Panel on Climate Change (SRES). Cambridge University Press, Cambridge. Available at http://www.ipcc.ch/ipccreports/sres/emission/index.php?idp=0
  39. Nieto S, Rodríguez-Puebla C (2006) Comparison of precipitation from observed data and general circulation models over the Iberian Peninsula. J Clim 19:4254–4275. doi:10.1175/JCLI3859.1 CrossRefGoogle Scholar
  40. Nikulin G, Kjellström E, Hansson U et al (2011) Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A 63:41–55. doi:10.1111/j.1600-0870.2010.00466.x CrossRefGoogle Scholar
  41. Niu GY et al (2011) The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J Geophys Res 116, D12109CrossRefGoogle Scholar
  42. Orlowsky B, Seneviratne SI (2011) Global changes in extreme events: Regional and seasonal dimension. Clim Chang 110:669–696. doi:10.1007/s10584-011-0122-9 CrossRefGoogle Scholar
  43. Radu R, Déqué M, Somot S (2008) Spectral nudging in a spectral regional climate model. Tellus A 60:898–910. doi:10.1111/j.1600-0870.2008.00341.x CrossRefGoogle Scholar
  44. Roeckner E (2005a) IPCC MPI-ECHAM5_T63L31 MPI-OM_GR1.5 L40 20C3M_all run no.1: atmosphere 6-HOUR values MPImet/MaDGermany. World Data Center for Climate, Hamburg. CERA-DB “EH5-T63L31_OM_20C3M_1_6H”Google Scholar
  45. Roeckner E (2005b) IPCC MPI-ECHAM5_T63L31 MPI-OM_GR1.5 L40 20C3M_all run no.3: atmosphere 6-HOUR values MPImet/MaDGermany. World Data Center for Climate, Hamburg. CERA-DB “EH5-T63L31_OM_20C3M_3_6H”Google Scholar
  46. Roeckner E, Bäuml G, Bonaventura L et al. (2003) The atmospheric general circulation model ECHAM5. Part I. Max-Planck Institut für Meteorologie, Report No. 349, HamburgGoogle Scholar
  47. Roeckner E, Lautenschlager M, Schneider H (2006a) IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 SRESA2 run no.1: atmosphere 6-HOUR values MPImet/MaDGermany. World Data Center for Climate, Hamburg. doi:10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_A2_1_6H Google Scholar
  48. Roeckner E et al (2006b) IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 SRESA2 run no.3: atmosphere 6-HOUR values MPImet/MaDGermany. World Data Center for Climate, Hamburg. doi:10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_A2_3_6H Google Scholar
  49. Roeckner E et al (2006c) IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 SRESA1B run no.1: atmosphere 6-HOUR values MPImet/MaDGermany. World Data Center for Climate, Hamburg. doi:10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_A1B_1_6H Google Scholar
  50. Roeckner E et al (2006d) IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 SRESA1B run no.3: atmosphere 6-HOUR values MPImet/MaDGermany. World Data Center for Climate, Hamburg. doi:10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_A1B_3_6H Google Scholar
  51. Roeckner E et al (2006e) IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 SRESB1 run no.1: atmosphere 6-HOUR values MPImet/MaDGermany. World Data Center for Climate, Hamburg. doi:10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_B1_1_6H Google Scholar
  52. Roeckner E et al (2006f) IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 SRESB1 run no.3: atmosphere 6-HOUR values MPImet/MaDGermany. World Data Center for Climate, Hamburg. doi:10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_B1_3_6H Google Scholar
  53. Rummukainen M (2010) State-of-the-art with regional climate models. WIREs Clim Change 1:82–96. doi:10.1002/wcc.8 CrossRefGoogle Scholar
  54. Sánchez E, Míguez-Macho G (2010) Regional climate projections over the Iberian peninsula: climate change scenarios modeling. In: Pérez F, Boscolo R (eds) Climate in Spain: Past, present and future. Regional climate change assessment report. Red climática CLIVAR-ESPAÑA, Madrid, pp 69–80Google Scholar
  55. Sánchez E, Gallardo C, Gaertner MA et al (2004) Future climate extreme events in the Mediterranean simulated by a regional climate model: A first approach. Global Planet Change 44:163–180. doi:10.1016/j.gloplacha.2004.06.010 CrossRefGoogle Scholar
  56. Serra C, Burgueño A, Martínez MD et al (2006) Trends in dry spells across Catalonia (NE Spain) during the second half of the 20th century. Theor Appl Climatol 85:165–183. doi:10.1007/s00704-005-0184-6 CrossRefGoogle Scholar
  57. Skamarock WC, Klemp JB (2008) A time-split non hydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227:3465–3485. doi:10.1016/j.jcp.2007.01.037 CrossRefGoogle Scholar
  58. Tebaldi C, Hayhoe K, Arblaster JM et al (2006) Going to the extremes. Clim Chang 79:185–211. doi:10.1007/s10584-006-9051-4 CrossRefGoogle Scholar
  59. Uppala SM, Kållberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176 CrossRefGoogle Scholar
  60. Van Ulden AP, Van Oldenborgh GJ (2006) Large-scale atmospheric circulation biases and changes in global climate model simulations and their importance for climate change in Central Europe. Atmos Chem Phys 6:863–881. doi:10.5194/acp-6-863-2006 CrossRefGoogle Scholar
  61. Vicente-Serrano SM, Cuadrat-Prats JM (2007) Trends in drought intensity and variability in the middle Ebro valley (NE of the Iberian Peninsula) during the second half of the twentieth century. Theor Appl Climatol 88:247–258. doi:10.1007/s00704-006-0236-6 CrossRefGoogle Scholar
  62. Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J Clim 23:1696–1718. doi:10.1175/2009JCLI2909.1 CrossRefGoogle Scholar
  63. Von Storch H, Langenberg H, Feser F (2000) A spectral nudging technique for dynamical downscaling purposes. Mon Weather Rev 128:3664–3673CrossRefGoogle Scholar
  64. WMO (2012) Standardized precipitation index user guide. World Meteorological Organization, WMO-No. 1090, GenevaGoogle Scholar
  65. Zhang X, Alexander L, Hegerl GC et al (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim Change 2:851870. doi:10.1002/wcc.147 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • A. Barrera-Escoda
    • 1
  • M. Gonçalves
    • 2
    • 3
  • D. Guerreiro
    • 2
  • J. Cunillera
    • 1
  • J. M. Baldasano
    • 2
    • 3
  1. 1.Climate Change UnitMeteorological Service of CataloniaBarcelonaSpain
  2. 2.Earth Sciences DepartmentBarcelona Supercomputing Center–Centro Nacional de SupercomputaciónBarcelonaSpain
  3. 3.Projects DepartmentTechnical University of CataloniaBarcelonaSpain

Personalised recommendations