Climatic Change

, Volume 122, Issue 4, pp 651–664 | Cite as

CO2 equivalences for short-lived climate forcers

  • Odette DeuberEmail author
  • Gunnar Luderer
  • Robert Sausen


With advancing climate change there is a growing need to include short-lived climate forcings in cost-efficient mitigation strategies to achieve international climate policy targets. Tools are required to compare the climate impact of perturbations with distinctively different atmospheric lifetimes and atmospheric properties. We present a generic approach for relating the climate effect of short-lived climate forcers (SLCF) to that of CO2 emissions. We distinguish between three alternative types of metric-based factors that can be used to derive CO2 equivalences for SLCF: based on forcing, activity and fossil fuel consumption. We derive numerical values for a wide range of parameter assumptions and apply the resulting generalised approach to the practical example of aviation-induced cloudiness. The evaluation of CO2 equivalences for SLCF tends to be more sensitive to SLCF specific physical uncertainties and the normative choice of a discount rate than to the choice of a physical or economic metric approach. The ability of physical metrics to approximate economic-based metrics alters with changing atmospheric concentration levels and trends. Under reference conditions, physical CO2 equivalences for SLCF provide sufficient proxies for economic ones. The latter, however, allow detailed insight into structural uncertainties. They provide CO2 equivalences for SLCF in short term strategies in the face of failing climate policies, and a temporal evolution of CO2 equivalences over time that is noticeably better in line with cost-efficient climate stabilisation.


Discount Rate Climate Policy Global Warming Potential Reference Case Radiative Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This paper is part of the PhD thesis of Odette Deuber, who was funded by the Heinrich Böll Stiftung. We are grateful to Ling Lim and David S Lee (Manchester Metropolitan University) for providing the model LinClim. We thank the anonymous reviewers for their constructive comments.

Supplementary material

10584_2013_1014_MOESM1_ESM.doc (77 kb)
ESM 1 (DOC 77 kb)


  1. Azar C, Johansson DJA (2011) Valuing the non-CO2 climate impacts of aviation. Clim Chang. doi: 10.1007/s10584-011-0168-8 Google Scholar
  2. Berntsen T, Fuglestvedt J, Myhre G, Stordal F, Berglen TF (2006) Abatement of greenhouse gases: does location matter? Clim Chang. doi: 10.1007/s10584-006-0433-4 Google Scholar
  3. Boer GJ, Yu B (2003) Climate sensitivity and response. Clim Dyn. doi: 10.1007/s00382-002-0283-3 Google Scholar
  4. Bond TC, Zarzycki C, Flanner MG, Koch DM (2011) Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse. Atmos Chem Phys. doi: 10.5194/acp-11-1505-2011 Google Scholar
  5. Boucher O (2012) Comparison of physically- and economically-based CO2-equivalences for methane. Earth Syst Dyn. doi: 10.5194/esd-3-49-2012 Google Scholar
  6. Boucher O, Reddy MS (2008) Climate trade-off between black carbon and carbon dioxide emissions. Energy Policy. doi: 10.1016/j.enpol.2007.08.039 Google Scholar
  7. Burkhardt U, Kärcher B (2011) Global radiative forcing from cirrus. Nat Clim Chang. doi: 10.1038/nclimate1068 Google Scholar
  8. Deuber O, Luderer G, Edenhofer O (2013a) Physico-economic evaluation of climate metrics: a conceptual framework. Environ Sci Pol. doi: 10.1016/j.envsci.2013.01.018 Google Scholar
  9. Deuber O, Matthes S, Sausen R, Ponater M, Lim L (2013b) A physical metric-based framework for evaluating the climate trade-off between CO2 and contrails – the case of lowering aircraft flight trajectories. Environ Sci Pol. doi: 10.1016/j.envsci.2012.10.004 Google Scholar
  10. Dorbian CS, Wolfe PJ, Waitz IA (2011) Estimating the climate and air quality benefits of aviation fuel and emission reductions. Atmos Environ. doi: 10.1016/j.atmosenv.2011.02.025 Google Scholar
  11. Eckhaus RS (1992) Comparing the effects of greenhouse gas emissions on global warming. Energy J 13:25–35Google Scholar
  12. Forster P, Shine K, Stuber N (2006) It is premature to include non-CO2 effects of aviation in emission trading schemes. Atmos Environ. doi: 10.1016/j.atmosenv.2005.11.005 Google Scholar
  13. Forster P, Ramaswamy V et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  14. Frömming C, Ponater M, Dahlmann K, Grewe V, Lee DS, Sausen R (2012) Aviation-induced radiative forcing and surface temperature change in dependency of the emission altitude. J Geophys Res. doi: 10.1029/2012JD018204 Google Scholar
  15. Fuglestvedt JS, Shine KP, Berntsen T, Cook J, Lee DS, Stenke A, Skeie RB, Velders GJM, Waitz IA (2010) Transport impacts on atmosphere and climate: metrics. Atmos Environ. doi: 10.1016/j.atmosenv.2009.04.044 Google Scholar
  16. Gierens K, Sausen R, Schumann U (1999) A diagnostic study of the global distribution of SLCFs part II: future air traffic scenarios. Theor Appl Climatol. doi: 10.1007/s007040050087 Google Scholar
  17. Gillett NP, Matthews HD (2010) Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases. Environ Res Lett. doi: 10.1088/1748-9326/5/3/034011 Google Scholar
  18. Hammitt JKH, Jain AK, Adams JL, Wuebbles DJ (1996) A welfare-based index for assessing environmental effects of greenhouse-gas emissions. Nature. doi: 10.1038/381301a0 Google Scholar
  19. Hansen J, Sato M, Ruedy L, Nazarenko L et al (2005) Efficacy of climate forcing. J Geophys Res. doi: 10.1029/2005JD005776 Google Scholar
  20. Hasselmann K, Hasselmann S, Giering R, Ocana V, von Storch H (1997) Sensitivity study of optimal CO2 emission paths using a Simplified Structural Integrated Assessment Modal (SIAM). Clim Chang. doi: 10.1023/A:1005339625015 Google Scholar
  21. IEA (International Energy Agency) (2009) Oil information 2009. ISBN 978-92-64-06099-9Google Scholar
  22. IPCC (Intergovernmental Panel on Climate Change) (1990) In: Houghton JT, Jenkins GJ, Ephraums JJ (eds) Climate change: the Inter-governmental Panel on Climate Change Scientific Assessment. Cambridge University Press, Cambridge, 364 ppGoogle Scholar
  23. Jackson SC (2009) Parallel pursuit of near-term and long-term climate mitigation. Science. doi: 10.1126/science.1177042 Google Scholar
  24. Johansson DJA (2012) Economics and physical-based metrics for comparing greenhouse gases. Clim Chang. doi: 10.1007/s10584-011-0072-2 Google Scholar
  25. Joshi M, Shine K, Ponater M, Stuber N, Sausen R, Li L (2003) A comparison of climate response to different radiative forcings in three general circulation models: towards an improved metric of climate change. Clim Dyn. doi: 10.1007/s00382-003-0305-9 Google Scholar
  26. Lee DS, Fahey DW, Forster PM, Newton PJ, Wit RCN, Lim LL, Owen B, Sausen R (2009) Aviation and global climate change in the 21st century. Atmos Environ. doi: 10.1016/j.atmosenv.2009.04.024 Google Scholar
  27. Lee DS, Pitari G, Grewe V et al (2010) Transport impacts on atmosphere and climate: aviation. Atmos Environ. doi: 10.1016/j.atmosenv.2009.06.005 Google Scholar
  28. Lim L, Lee DS (2006) Quantifying the effects of aviation on radiative forcing and temperature with a climate response model. Proceeding of the TAC Conference. June 26 to 29. Oxford, UKGoogle Scholar
  29. Lund MT, Berntsen T, Fuglestvedt JS, Ponater M, Shine KP (2012) How much information is lost by using global-mean climate metrics? An example using the transport sector. Clim Chang. doi: 10.1007/s10584-011-0391-3 Google Scholar
  30. Marais K, Lakachko SP, Jun M, Mahashabde A, Waitz IA (2008) Assessing the impact of aviation on climate. Meteorol Z. doi: 10.1127/0941-2948/2008/0274 Google Scholar
  31. Masui T, Matsumoto K, Hijioka Y, Kinoshita TN et al (2011) An emission pathway for stabilization at 6 Wm-2 radiative forcing. Clim Chang. doi: 10.1007/s10584-011-0150-5 Google Scholar
  32. Nordhaus WD, Boyer J (2000) Warming the world: economic models of global warming. MIT Press, CambridgeGoogle Scholar
  33. Penner JE, Prather MJ, Isaksen ISA, Fuglestvedt JS, Zbigniew K, Stevenson DS (2010) Short-lived uncertainty? Nat Geosci. doi: 10.1038/ngeo932 Google Scholar
  34. Plattner GK, Stocker T, Midgley P, Tignor M (2009) Expert Meeting on the Science of Alternative Metrics, Oslo, Norway, 18-20 March 2009. Meeting ReportGoogle Scholar
  35. Ponater M, Marquart S, Sausen R, Schumann U (2005) On contrail climate sensitivity. Geophys Res Lett. doi: 10.1029/2005GL022580 Google Scholar
  36. Rap A, Forster PM, Haywood JM, Jones A, Boucher O (2010) Estimating the climate impact of linear contrails using the UK Met Office climate model. Geophys Res Lett. doi: 10.1029/2010GL045161 Google Scholar
  37. Roeckner E, Bengtsson L, Feichter J, Leliveld J, Rohde H (1999) Transient climate change simulation with a coupled atmosphere-ocean GCM including the tropospheric sulphur cycle. J Clim. doi: 10.1175/1520-0442(1999)012<3004:TCCSWA>2.0.CO;2 Google Scholar
  38. Rypdal K, Berntsen T, Fuglestvedt J, Aunan K, Torvanger A, Stordal F, Pacyna J, Nygaard L (2005) Tropospheric ozone and aerosols in climate agreements: scientific and political challenges. Environ Sci Pol. doi: 10.1016/j.envsci.2004.09.003 Google Scholar
  39. Sausen R, Schumann U (2000) Estimates of the climate response to aircraft CO2 and NOx emissions scenarios. Clim Chang. doi: 10.1023/A:1005579306109 Google Scholar
  40. Schumann U (2005) Formation, properties and climatic effects of contrails. C R Phys. doi: 10.1016/j.crhy.2005.05.002 Google Scholar
  41. Shine KP (2009) The global warming potential – the need for an interdisciplinary retrial. An editorial comment. Clim Chang. doi: 10.1007/s10584-009-9647-6 Google Scholar
  42. Shine KP, Fuglestvedt JS, Hailermariam K, Stuber N (2005) Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim Chang. doi: 10.1007/s10584-005-1146-9 Google Scholar
  43. Shine KP, Berntsen TK, Fuglestvedt JS, Skeie RB, Stuber N (2007) Comparing the climate effect of emissions of short- and long-lived climate agents. Philos Trans R Soc A. doi: 10.1098/rsta.2007.2050 Google Scholar
  44. Smith SM, Lowe JA, Bowerman NHA, Gohar LK, Huntingford C, Allan MR (2012) Equivalence of greenhouse-gas emissions for peak temperature limits. Nat Clim Chang. doi: 10.1038/nclimate1496 Google Scholar
  45. Stern N (2007) The economics of climate change. The Stern review. Cambridge University Press, New YorkCrossRefGoogle Scholar
  46. Tanaka K, Peters GP, Fuglestvedt JS (2010) Multicomponent climate policy: why do emission metrics matter? Carbon Manag 1:191–197CrossRefGoogle Scholar
  47. Van Vuuren DP, Stehfest E, den Elzen MGJ et al (2011) RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C. Clim Chang. doi: 10.1007/s10584-011-0152-3 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Institut für Physik der AtmosphäreDeutsches Zentrum für Luft- und Raumfahrt (DLR)WeßlingGermany

Personalised recommendations