Skip to main content

The benefits of recent warming for maize production in high latitude China

Abstract

Latitudes above 45°N have been characterized by rates of warming faster than the global average since 1980. However, the effects of this warming on crop production at these latitudes are still unclear. Using 30-years of weather and crop management data in Heilongjiang area of China (43.4° to 53.4°N), combined with the Hybrid-Maize model, we show that that maize yields would have stagnated in most areas and decreased in the southern part of Heilongjiang if varieties were assumed fixed since 1980. However, we show that through farmers’ adaptation, warming has benefitted maize production for much of this region. Specifically, farmers gradually chose longer maturing varieties, resulting in a net 7–17 % yield increase per decade. Meanwhile, farmers also rapidly expanded maize area (from 1.88 million ha in 1980 to 4.01 million ha in 2009) and the northward limit of maize area shifted by more than 290 km from ~50.8°N to ~53.4°N. Overall, benefits from warming represented 35 % of the overall yield gains in the region over this period. The results indicate substantial ongoing adaptations and benefits at north high-latitudes, although they still represent a small fraction of global maize area. The sustainability of crop area expansion in these regions remains unclear and deserves further study.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bai J (2009) Evaluation and exploration of maize (Zea mays L.) yield potential by using Hybrid-Maize simulation model. PhD dissertation. China Agricultural University, Beijing

  2. Bai J, Chen X, Dobermann A, Yang H, Cassman KG, Zhang F (2010) Evaluation of NASA satellite- and model-derived weather data for simulation of maize yield potential in China. Agron J 102:9–16. doi:10.2134/agronj2009.0085

    Article  Google Scholar 

  3. Chang DJ, Liu SL (2001) Study on performance of some maize inbred lines and strains in Heilongjiang cultivation regions. J Maize Sci 9:60–64, http://d.wanfangdata.com.cn/periodical_ymkx200101019.aspx

    Google Scholar 

  4. Chen XP, Cui ZL, Vitousek PM, Cassman KG, Matson PA, Bai JS, Meng QF, Hou P, Yue SC, Romheld V, Zhang FS (2011) Integrated soil-crop system management for food security. Proc Natl Acad Sci U S A 108:6399–6404. doi:10.1073/pnas.1101419108

    Article  Google Scholar 

  5. China Agriculture Database (CAD) (2013) http://zzys.agri.gov.cn/

  6. Chinese Meteorological Administration archives (CMA archives) (2013) http://www.cma.gov.cn/

  7. DeFries R, Rosenzweig C (2010) Toward a whole-landscape approach for sustainable land use in the tropics. Proc Natl Acad Sci U S A 107:19627–19632. doi:10.1073/pnas.1011163107

    Article  Google Scholar 

  8. Euskirchen ES, McGuire AD, Kicklighter DW, Zhuang Q, Clein JS, Dargaville RJ, Dye DG, Kimball JS, McDonald KC, Melillo JM, Romanovsky VE, Smith NV (2006) Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Glob Chang Biol 12:731–750. doi:10.1111/j.1365-2486.2006.01113.x

    Article  Google Scholar 

  9. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342. doi:10.1038/nature10452

    Article  Google Scholar 

  10. Food and Agricultural Organization of the United Nations (FAO) (2013) FAO Database. www.faostat.fao.org/

  11. Friedlingstein P, Houghton RA, Marland G, Hackler J, Boden TA, Conway TJ, Canadell JG, Raupach MR, Ciais P, Le Quere C (2010) Update on CO2 emissions. Nat Geosci 3:811–812. doi:10.1038/ngeo1022

    Article  Google Scholar 

  12. Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty N, Foley JA (2010) Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc Natl Acad Sci U S A 107:16732–16737. doi:10.1073/pnas.0910275107

    Article  Google Scholar 

  13. Grassini P, Cassman KG (2012) High-yield maize with large net energy yield and small global warming intensity. Proc Natl Acad Sci USA 109:1074–1079. doi:10.1073/pnas.1116364109

    Google Scholar 

  14. Grassini P, Yang HS, Cassman KG (2009) Limits to maize productivity in Western Corn-Belt: a simulation analysis for fully irrigated and rainfed conditions. Agric For Meteorol 149:1254–1265. doi:10.1016/j.agrformet.2009.02.012

    Article  Google Scholar 

  15. Gregory PJ, Marshall B (2012) Attribution of climate change: a methodology to estimate the potential contribution to increases in potato yield in Scotland since 1960. Glob Chang Biol 18:1372–1388. doi:10.1111/j.1365-2486.2011.02601.x

    Article  Google Scholar 

  16. Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci U S A 103:14288–14293. doi:10.1073/pnas.0606291103

    Article  Google Scholar 

  17. Intergovernmental Panel on Climate Change (IPCC) (2007) Fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml#.Ua0RNaU6lBE

    Google Scholar 

  18. Jiang LX, Sun MM, Yu RH, Sun YT (2000) Agro-climatic basis for allocating maize varieties in Heilongjiang Province. Resour Sci 22:60–64, http://d.wanfangdata.com.cn/periodical_zykx200001014.aspx

    Google Scholar 

  19. Jing XQ, He J, Liu J, Yang H (2006) Maize in Northeast region of China. China Agriculture Press, Beijing

    Google Scholar 

  20. Jones H (1992) Plant and microclimate: a quantitative approach to environmental plant physiology, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  21. Leakey ADB (2009) Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proc R Soc B 276:2333–2343. doi:10.1098/rspb.2008.1517

    Article  Google Scholar 

  22. Lee X, Goulden ML, Hollinger DY, Barr A, Black TA, Bohrer G, Bracho R, Drake B, Goldstein A, Gu L, Katul G, Kolb T, Law BE, Margolis H, Meyers T, Monson R, Munger W, Oren R, Paw UKT, Richardson AD, Schmid HP, Staebler R, Wofsy S, Zhao L (2011) Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479:384–387. doi:10.1038/nature10588

    Article  Google Scholar 

  23. Linquist B, van Groenigen KJ, Adviento-Borbe MA, Pittelkow C, van Kessel C (2012) An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob Chang Biol 18:194–209. doi:10.1111/j.1365-2486.2011.02502.x

    Article  Google Scholar 

  24. Liu Y, Wang EL, Yang XG, Wang J (2010) Contributions of climatic and crop varietal changes to crop production in the North China Plain, since 1980s. Glob Chang Biol 16:2287–2299. doi:10.1111/j.1365-2486.2009.02077.x

    Article  Google Scholar 

  25. Liu ZJ, Yang XG, Hubbard KG, Lin XM (2012) Maize potential yields and yield gaps in the changing climate of northest China. Glob Chang Biol 18:3441–3454. doi:10.1111/j.1365-2486.2012.02774.x

    Article  Google Scholar 

  26. Lobell DB, Burke MB (2008) Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation. Environ Res Lett 3:034007. doi:10.1088/1748-9326/3/3/034007

    Article  Google Scholar 

  27. Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620. doi:10.1126/science.1204531

    Article  Google Scholar 

  28. Markelz RJC, Strellner RS, Leakey ADB (2011) Impairment of C4 photosynthesis by drought is exacerbated by limiting nitrogen and ameliorated by elevated [CO2] in maize. J Exp Bot 62:3235–3246. doi:10.1093/jxb/err056

    Article  Google Scholar 

  29. McManus KM, Morton DC, Masek JG, Wang D, Sexton JO, Nagol JR, Ropars P, Boudreau S (2012) Satellite-based evidence for shrub and graminoid tundra expansion in northern Quebec from 1986 to 2010. Glob Chang Biol 18:2313–2323. doi:10.1111/j.1365-2486.2012.02708.x

    Article  Google Scholar 

  30. McMaster GS, Wilhelm WW (1997) Growing degree-days: one equation, two interpretations. Agric For Meteorol 87:291–300. doi:10.1016/s0168-1923(97)00027-0

    Article  Google Scholar 

  31. Meng QF, Hou P, Wu L, Chen XP, Cui ZL, Zhang FS (2013) Understanding production potentials and yield gaps in intensive maize production in China. Field Crop Res 143:91–97. doi:10.1016/j.fcr.2012.09.023

    Article  Google Scholar 

  32. Olesen JE, Carter TR, Diaz-Ambrona CH, Fronzek S, Heidmann T, Hickler T, Holt T, Minguez MI, Morales P, Palutikof JP, Quemada M, Ruiz-Ramos M, Rubaek GH, Sau F, Smith B, Sykes MT (2007) Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Clim Chang 81:123–143. doi:10.1007/s10584-006-9216-1

    Article  Google Scholar 

  33. Peng SB, Huang JL, Sheehy JE, Laza RC, Visperas RM, Zhong XH, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 101:9971–9975. doi:10.1073/pnas.0403720101

    Article  Google Scholar 

  34. Rosenzweig C, Parry ML (1994) Potential impact of climate change on world food supply. Nature 367:133–138. doi:10.1038/367133a0

    Article  Google Scholar 

  35. Schlenker W, Lobell DB (2010) Robust negative impacts of climate change on African agriculture. Environ Res Lett 5:014010. doi:10.1088/1748-9326/5/1/014010

    Article  Google Scholar 

  36. Timsina J, Jat ML, Majumdar K (2010) Rice-maize systems of South Asia: current status, future prospects and research priorities for nutrient management. Plant Soil 335:65–82. doi:10.1007/s11104-010-0418-y

    Article  Google Scholar 

  37. Yan MH, Liu XT, Zhang W, Li XJ, Liu S (2011) Spatio-temporal changes changes of ≥10 °C accumulated temperature in northeastern China since 1961. Chin Geogr Sci 21:17–26. doi:10.1007/s11769-011-0438-4

    Article  Google Scholar 

  38. Yang HS, Dobermann A, Lindquist JL, Walters DT, Arkebauer TJ, Cassman KG (2004) Hybrid-maize—a maize simulation model that combines two crop modeling approaches. Field Crop Res 87:131–154. doi:10.1016/j.fcr.2003.10.003

    Article  Google Scholar 

  39. Yang HS, Dobermann A, Cassman KG, Walters DT (2006) Features, applications, and limitations of the hybrid-maize simulation model. Agron J 98:737–748. doi:10.2134/agronj2005.0162

    Article  Google Scholar 

Download references

Acknowledgments

We thank Kenneth Cassman and Haishun Yang’s team (University of Nebraska-Lincoln) for providing their model and Peter Vitousek (Stanford University) for his comment on an earlier version of the manuscript. This work was financially supported by the National Maize Production System in China (CARS-02-24), National Basic Research Program of China (973 Program: 2009CB118606), and Innovative Group Grant of the NSFC (31121062).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xinping Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 744 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meng, Q., Hou, P., Lobell, D.B. et al. The benefits of recent warming for maize production in high latitude China. Climatic Change 122, 341–349 (2014). https://doi.org/10.1007/s10584-013-1009-8

Download citation

Keywords

  • Maize
  • Maize Yield
  • Heilongjiang Province
  • Maize Production
  • Maize Variety