Climatic Change

, Volume 122, Issue 1–2, pp 257–269

Anthropogenic and natural causes of climate change

Article

Abstract

We test for causality between radiative forcing and temperature using multivariate time series models and Granger causality tests that are robust to the non-stationary (trending) nature of global climate data. We find that both natural and anthropogenic forcings cause temperature change and also that temperature causes greenhouse gas concentration changes. Although the effects of greenhouse gases and volcanic forcing are robust across model specifications, we cannot detect any effect of black carbon on temperature, the effect of changes in solar irradiance is weak, and the effect of anthropogenic sulfate aerosols may be only around half that usually attributed to them.

References

  1. Attanasio A (2012) Testing for linear Granger causality from natural/anthropogenic forcings to global temperature anomalies. Theor Appl Climatol 110:281–289CrossRefGoogle Scholar
  2. Attanasio A, Pasini A, Triacca U (2012) A contribution to attribution of recent global warming by out-of-sample Granger causality analysis. Atmos Sci Lett 13(1):67–72CrossRefGoogle Scholar
  3. Barichivich J, Briffa KR, Osborn TJ, Melvin TM, Caesar J (2012) Thermal growing season and timing of biospheric carbon uptake across the Northern Hemisphere. Glob Biogeochem Cycles 26(4), GB4015Google Scholar
  4. Beenstock M, Reingewertz Y, Paldor N (2012) Polynomial cointegration tests of anthropogenic impact on global warming. Earth Syst Dyn 3:173–188CrossRefGoogle Scholar
  5. Bilancia M, Vitale D (2012) Anthropogenic CO2 emissions and global warming: evidence from Granger causality analysis. In: Di Ciaccio A, Coli M, Angulo Ibanez JM (eds.) Advanced statistical methods for the analysis of large data-sets, Springer, pp 229–239Google Scholar
  6. Bond TC et al (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res-Atmos 118(11):5380–5552CrossRefGoogle Scholar
  7. Boucher O, Pham M (2002) History of sulfate aerosol radiative forcings. Geophys Res Lett 29(9):22-1–22-4Google Scholar
  8. Canty T, Mascioli NR, Smarte M, Salawich RJ (2012) An empirical model of global climate—Part 1: reduced impact of volcanoes upon consideration of ocean circulation. Atmos Chem Phys Discuss 12:23829–23911CrossRefGoogle Scholar
  9. Compo GP, Sardeshmukh PD (2010) Removing ENSO-related variations from the climate record. J Clim 23:1957–1978CrossRefGoogle Scholar
  10. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds.) Climate change 2007: The physical science basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 129–234Google Scholar
  11. Granger CWJ (1988) Some recent developments in a concept of causality. J Econ 39:199–211CrossRefGoogle Scholar
  12. Hacker RS, Hatemi-J A (2006) Tests for causality between integrated variables using asymptotic and bootstrap distributions: theory and application. Appl Econ 38(13):1489–1500CrossRefGoogle Scholar
  13. Hansen J, Ruedy R, Sato N, Lo K (2010) Global surface temperature change. Rev Geophys 48, RG4004Google Scholar
  14. Jacobs RL, Leamer EE, Ward MP (1979) Difficulties with testing for causation. Econ Inq 17(3):401–413CrossRefGoogle Scholar
  15. Kaufmann RK, Juselius K (2013) Testing hypotheses about glacial cycles against the observational record. Paleoceanography 28(1):175–184CrossRefGoogle Scholar
  16. Kaufmann RK, Kauppi H, Stock JH (2006) Emissions, concentrations, and temperature: a time series analysis. Clim Chang 77(3–4):249–278CrossRefGoogle Scholar
  17. Kaufmann RK, Kauppi H, Mann ML, Stock JH (2013) Does temperature contain a stochastic trend: linking statistical results to physical mechanisms. Clim Chang 118(3–4):729–743CrossRefGoogle Scholar
  18. Kaufmann RK, Kauppi H, Mann ML, Stock JH (2011) Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc Natl Acad Sci 108(29):11790–11793CrossRefGoogle Scholar
  19. Kaufmann RK, Stern DI (1997) Evidence for human influence on climate from hemispheric temperature relations. Nature 388:39–44CrossRefGoogle Scholar
  20. Keeling CD, Piper SC, Bacastow RB, Wahlen M, Whorf TP, Heimann M, Meijer HA (2005) Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: Observation and carbon cycle implications. In: Ehleringer JR, Cerling T, Dearing MD (eds.) A history of atmospheric CO2 and its effects on plants, animals, and ecosystems. Ecological Studies 177, Springer, pp 83–113Google Scholar
  21. Klimont Z, Smith SJ, Cofala J (2013) The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environ Res Lett 8:014003CrossRefGoogle Scholar
  22. Kodra E, Chatterjee S, Ganguly AR (2011) Exploring Granger causality between global average observed time series of carbon dioxide and temperature. Theor Appl Climatol 104(3–4):325–335CrossRefGoogle Scholar
  23. Lean JL, Rind DH (2008) How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys Res Lett 35, L18701CrossRefGoogle Scholar
  24. Levitus S, Antonov JI, Boyer TP, Baranova OK, Garcia HE, Locarnini RA, Mishonov AV, Reagan JR, Seidov D, Yarosh ES, Zweng MM (2012) World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys Res Lett 39(10), L10603Google Scholar
  25. Lütkepohl H (1982) Non-causality due to omitted variables. J Econ 19:367–378CrossRefGoogle Scholar
  26. Mascioli NR, Canty T, Salawitch RJ (2012) An empirical model of global climate—Part 2: implications for future temperature. Atmos Chem Phys Discuss 12:23913–23974CrossRefGoogle Scholar
  27. Meinshausen M, Smith S et al (2011) The RCP GHG concentrations and their extension from 1765 to 2300. Clim Chang 109:213–241CrossRefGoogle Scholar
  28. Morice CP, Kennedy JJ, Rayner NA, Jones PD (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 dataset. J Geophys Res 117, D08101Google Scholar
  29. Parrenin F, Masson-Delmotte V, Kohler P, Raynaud D, Paillard D, Schwander J, Barbante C, Landis A, Wegner A, Jouzel J (2013) Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science 330:1060–1063CrossRefGoogle Scholar
  30. Piao S, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang J, Barr A, Chen A, Grelle A, Hollinger DY, Laurila T, Lindroth A, Richardson AD, Vesala T (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451(7174):49–53CrossRefGoogle Scholar
  31. Pasini A, Triacca U, Attanasio A (2012) Evidence of recent casual decoupling between solar radiation and global temperature. Environ Res Lett 7:034020CrossRefGoogle Scholar
  32. Sargent TJ (1979) Causality, exogeneity, and natural rate models: reply to C. R. Nelson and B. T. McCallum. J Political Econ 87(2):403–409Google Scholar
  33. Sato M, Hansen JE, McCormick MP, Pollack JB (1993) Stratospheric aerosol optical depth, 1850–1990. J Geophys Res 98(D12):22987–22994CrossRefGoogle Scholar
  34. Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464CrossRefGoogle Scholar
  35. Shakun JD, Clark PU, He F, Marcott SA, Mix AC, Liu Z, Otto-Bliesner B, Schmittner A, Bard E (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484:49–55CrossRefGoogle Scholar
  36. Smith SJ, van Aardenne J, Klimont Z, Andres RJ, Volke A, Delgado Arias S (2011) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos Chem Phys 11:1101–1116CrossRefGoogle Scholar
  37. Stern DI (2006) An atmosphere–ocean multicointegration model of global climate change. Computat Stat Data Anal 51(2):1330–1346CrossRefGoogle Scholar
  38. Stern DI, Kaufmann RK (2000) Detecting a global warming signal in hemispheric temperature series: a structural time series analysis. Clim Chang 47:411–438CrossRefGoogle Scholar
  39. Stone DA, Allen MR, Stott PA, Pall P, Min S-K, Nozawa T, Yukimoto S (2009) The detection and attribution of human influence on climate. Annu Rev Environ Resour 34:1–16CrossRefGoogle Scholar
  40. Stone DA, Allen MR (2005) Attribution of global surface warming without dynamical models. Geophys Res Lett 32, L18711CrossRefGoogle Scholar
  41. Sugihara G, May R, Ye H, Hsieh C-H, Deyle E, Fogarty M, Munch S (2012) Detecting causality in complex ecosystems. Science 338:496–500CrossRefGoogle Scholar
  42. Toda HY, Phillips PCB (1993) The spurious effect of unit roots on vector autoregressions: an analytical study. J Econ 59:229–255CrossRefGoogle Scholar
  43. Toda HY, Yamamoto T (1995) Statistical inference in vector autoregressions with possibly integrated processes. J Econ 66:225–250CrossRefGoogle Scholar
  44. Triacca U (2001) On the use of Granger causality to investigate the human influence on climate. Theor Appl Climatol 69:137–138CrossRefGoogle Scholar
  45. Triacca U (2005) Is Granger causality analysis appropriate to investigate the relationship between atmospheric concentration of carbon dioxide and global surface air temperature? Theor Appl Climatol 81(3–4):133–135CrossRefGoogle Scholar
  46. Triacca U, Attanasio A, Pasini A (2013) Anthropogenic global warming hypothesis: testing its robustness by Granger causality analysis. Environmetrics 24(4):260–268CrossRefGoogle Scholar
  47. Tung K-K, Zhou J (2013) Using data to attribute episodes of warming and cooling in instrumental records. Proc Natl Acad Sci 110(6):2058–2063CrossRefGoogle Scholar
  48. Wigley TML, Raper SCB (1992) Implications for climate and sea level of revised IPCC emissions scenarios. Nature 357:293–300CrossRefGoogle Scholar
  49. Wilde J (2012) Effects of simultaneity on testing Granger-causality—a cautionary note about statistical problems and economic misinterpretations. Institute of Empirical Economic Research, University of Osnabrück, Working Paper 93Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Crawford School of Public PolicyAustralian National UniversityCanberraAustralia
  2. 2.Department of Earth and EnvironmentBoston UniversityBostonUSA

Personalised recommendations